ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:226.25KB ,
文档编号:1195556      下载积分:3.49 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1195556.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(小六数学第4讲:枚举法(学生版).docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

小六数学第4讲:枚举法(学生版).docx

1、第四讲 枚举法 1.1.计数问题分为两个大类:计数问题分为两个大类: 2.2.枚举需要按照一定的顺序和一定的规律来进行分类,这样可以做到不重复和不遗漏。 3.3.枚举法的根本思想在于分类, 通过分类可以将原本复杂的问题拆分成若干个比较简单的问 题,然后再逐一进行分析。分类的思想可以化繁为简,化复杂为简单。 4.4.可以利用“树形图”来方便的记录枚举的过程,有几类问题就分出几个分枝,逐层按照 顺序不断分叉再一一筛选,留下符合条件的,去掉不符合条件的。注意在枚举“不计次序” 的问题时,只需考虑从小到大(或从大到小)排列的分枝,而不用理会其他情况。 5.5.计次序:计次序: 6.6.不计次序:不计次

2、序: 1.理解“枚举法”的含义。 2.能在题目中熟练运用枚举法解题。 例例 1 1:小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。若两枚骰子的点数和为小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。若两枚骰子的点数和为 7 7, 则小明胜;若点数和为则小明胜;若点数和为 8 8,则小红胜。试判断他们两人谁获胜的可能性大。,则小红胜。试判断他们两人谁获胜的可能性大。 例例 2 2:数一数,右图中有多少个三角形。数一数,右图中有多少个三角形。 例例 3:3:在算盘上,用两颗珠子可以表示多少个不同的四位数?在算盘上,用两颗珠子可以表示多少个不同的四位数? 例例 4 4 有一只无盖立方体纸箱,将

3、它沿棱剪开成平面展开图。那么,共有多少种不同的展开有一只无盖立方体纸箱,将它沿棱剪开成平面展开图。那么,共有多少种不同的展开 图?图? 例例 5 5:小明的暑假作业有语文、算术、外语三门,他准备每天做一门,且相邻两天不做同一小明的暑假作业有语文、算术、外语三门,他准备每天做一门,且相邻两天不做同一 门。如果小明第一天做语文,第五天也做语文,那么,这五天作业他共有多少种不同的安门。如果小明第一天做语文,第五天也做语文,那么,这五天作业他共有多少种不同的安 排?排? 例例 6 6:一次数学课堂练习有一次数学课堂练习有 3 3 道题,老师先写出一个,然后每隔道题,老师先写出一个,然后每隔 5 5 分

4、钟又写出一个。规定:分钟又写出一个。规定: (1 1)每个学生在老师写出一个新题时,如果原有题还没有做完,那么必须立即停下来转做)每个学生在老师写出一个新题时,如果原有题还没有做完,那么必须立即停下来转做 新题; (新题; (2 2)做完一道题时,如果老师没有写出新题,那么就转做前面相邻未解出的题。解)做完一道题时,如果老师没有写出新题,那么就转做前面相邻未解出的题。解 完各题的不同顺序共有多少种可能?完各题的不同顺序共有多少种可能? 例例 7 7:是否存在自然数是否存在自然数 n n,使得,使得 n n 2 2 n n2 2 能被能被 3 3 整除?整除? A A 1.A、B、C、D、E、F

5、 六支球队进行单循环赛,当比赛进行到某一天时,统计出 A、B、C、D、 E 五队已分别比赛了 5、4、3、2、1 场,由此可知,还没有与 B 队比赛的球队是( ) A. C 队 B. D 队 C. E 队 D. F 队 2写自然数 1、2、3、1000,一共写了个 0( ) A. 90 B. 171 C. 189 D. 192 3.已知 x,y 都有整数,且 xy=6,那么适合等式的解共有8组 4.将 6 拆成两个或两个以上的自然数之和,共有多少种不同拆法? 5.小明有 10 块糖,如果每天至少吃 3 块,吃完为止,那么共有多少种不同的吃法? B B 6.用五个 12 的小矩形纸片覆盖右图的

6、25 的大矩形,共有多少种不同盖法? 7.15 个球分成数量不同的四堆,数量最多的一堆至少有多少个球? 8.数数右图中共有多少个三角形? 9.甲、乙比赛乒乓球,五局三胜。已知甲胜了第一盘,并最终获胜。问:各盘的胜负情况有 多少种可能? 10.经理有 4 封信先后交给打字员,要求打字员总是先打最近接到的信,比如打完第 3 封信 时第4封信还未到, 此时如果第2封信还未打完, 那么就应先打第2封信而不能打第1封信。 打字员打完这 4 封信的先后顺序有多少种可能? C C 11.从 150 这 50 个自然数中选取两个数字, 使它们的和大于 50, 共有多少种不同的取法? 12.从 150 这 50

7、 个自然数中选取两个数字,使它们的和不大于 50,共有多少种不同的取 法 13.求证:若整数 n 不是 5 的倍数,则 n 2也不是 5 的倍数。 14.除以 4 余 1 的两位数共有几个? 15.今有一角币 1 张、贰角币 1 张、伍角币 1 张、一元币 4 张、五元币 2 张。这些纸币任意 付款,可以付出多少种不同数额的款? 1.由若干个小正方体堆成大正方体,其表面涂成红色,在所有小正方体中,三面被涂红的有 a 个,两面被涂红的有 b 个,一面被涂红的有 c 个。那么啊 a,b,c 三个数中( ) A. a 最大 B. b 最大 C. c 最大 D.哪个最大与小正方体的个数有关 2.10

8、块蛋糕分给甲、乙两人,每人至少 1 块,求一共有多少种不同的分法? 3.10 块蛋糕分成两堆,求一共有多少种不同的分法? 4.1,2,3,4 四个数字组成一个没有重复数字的四位数 abcd,若 ac,cd,求一共有 多少种方法? 5.把4位数x先四舍五入到十位, 所得之数再四舍五入到百位, 所得之数再四舍五入到千位, 恰好得到 2000,则 x 的最小值和最大值是多少? 1.从 1,2,3,4 四个数中选取 3 个数组成一个没有重复数字的 3 位数,求一共有多少种方 法? 2.有甲、乙、丙三个工厂一共要定 300 份报纸,每个工厂最少定 99 份,最多定 101 份,求 一共有多少种订报纸的方

9、法? 3.从 1,2,3,4 四个数中选取 3 个不同的数字组成一组,求一共有多少种方法? 4.将 300 拆成三个整数的和, 并且每个整数不小于 99, 不大于 101, 求一共有多少种方法? 5.从 18 中取出 3 个不同的数字使得 3 个数字的和等于 11,一共有多少种取法? 6.一共有 6 件相同的礼物分给甲、乙、丙、丁四个小朋友,每个人至少分一件,求一共有 多少种分法? 7.一共有 6 件相同的礼物分成 4 份,求一共有多少种分法? 8.妈妈买来 7 个鸡蛋,每天至少吃 2 个,吃完为止,一共有多少种不同的吃法? 9.妈妈买来 7 个鸡蛋,将它们分成若干份,一共有多少种不同的分法? 10.从两个 1,两个 2,1 个 3 中选出 3 个数字组成 3 位数,那么一共可以组成多少个不同的 3 位数

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|