1、1 八年级八年级数学数学下册知识点及公式下册知识点及公式汇总汇总 第十六章第十六章 分式分式 一知识框架一知识框架 二知识概念二知识概念 B 中含有未知数且 B 不等于 0 的整式叫做分式。其中 A 叫做分式的分子,B 叫做分式的分母。 2.分式有意义的条件:分母不等于 0 3.约分:把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分。 4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值 不变。 .最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将
2、一个分式化为最简分式. 分式的四则运算: ()同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减. ()异分 母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法 法则进行计算. () 分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积 的分母. ()分式的除法法则: 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. 除以一个分式,等于乘以这个分式的倒数: .分式方程:分母中含有未知数的方程叫做分式方程. .分式方程的解法: 去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); 按解整式方程的步骤求
3、出未知数的值; 验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知 数的取值范围,可能产生增根). 2 第十七章第十七章 反比例函数反比例函数 一一. .知识框架知识框架 二知识概念二知识概念 2.图像:反比例函数的图像属于双曲线。 注意: 反比例函数的图象又是中心对称图形。 有两条对称轴: 直线 y=x 和 y=-x, 对称中心是: 原点。 3.性质: 当 k0 时, 双曲线的两支分别位于第一、 第三象限, 在每个象限内 y 值随 x 值的增大而减小; 当 k0 时,双曲线的两支分别位于第二、第四象限,在每个象限内 y 值随 x 值的增大而增大。 4.|k|的几
4、何意义: 表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩 形的面积。 第十八章第十八章 勾股定理勾股定理 一一知识概念知识概念 1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a2b2=c2。 勾股定理逆定理: 如果三角形三边长 a,b,c 满足 a2b2=c2。 , 那么这个三角形是直角三角形。 2.定理:经过证明被确认正确的命题叫做定理。 3.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么 另一个叫做它的逆命题。 (例如:勾股定理与勾股定理逆定理) 3 二二. .知识框架知识框架 第十九章第十九章 四边形四边形
5、一知识框架一知识框架 二知识概念二知识概念 1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。 2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角 线互相平分。 3.平行四边形的判定: ()两组对边分别相等的四边形是平行四边形; ()对角线互相平分的四边形是平行四边形; ()两组对角分别相等的四边形是平行四边形; ()一组对边平行且相等的四边形是平行四边形。4.三角形的中位线平行于三角形的第三 边,且等于第三边的一半。5.直角三角形斜边上的中线等于斜边的一半。 4 6.矩形的定义:有一个角是直角的平行四边形。 7.矩形的性质: 矩形的四个角都是直角
6、;矩形的对角线互相平分且相等。8.矩形判定定理: ()有一个角是直角的平行四边形叫做矩形。 ()对角线相等的平行四边形是矩形。 ()有三个角是直角的四边形是矩形。 9.菱形的定义 :邻边相等的平行四边形。10.菱形的性质:菱形的四条边都相等;菱形的两 条对角线互相垂直,并且每一条对角线平分一组对角。11.菱形的判定定理: ()一组邻边相等的平行四边形是菱形。 ()对角线互相垂直的平行四边形是菱形。 ()四条边相等的四边形是菱形。 12.菱形面积=1/2ab(a、b 为两条对角线) 13.正方形定义:一个角是直角的菱形或邻边相等的矩形。 14.正方形的性质:四条边都相等,四个角都是直角。正方形既
7、是矩形,又是菱形。15.正方 形判定定理: ()邻边相等的矩形是正方形; ()有一个角是直角的菱形是正方形。 16.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。 17.直角梯形的定义:有一个角是直角的梯形 18.等腰梯形的定义:两腰相等的梯形。 19.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。 20.等腰梯形判定定理: 同一底上两个角相等的梯形是等腰梯形; 对角线相等的梯形是等腰梯 形。 第二十章第二十章 数据的分析数据的分析 一知识框架一知识框架 二知识概念二知识概念 1.加权平均数: Mw = (W1X1 + W2X2 + + WnXn) / (W1+W2+Wn) 注意:权反映了某个数据在整个数据中的重要程度。 2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数, 则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数 就是这组数据的中位数。3. 众数:一组数据中出现次数最多的数据就是这组数据的众数。4. 极 差:组数据中的最大数据与最小数据的差叫做这组数据的极差。5.方差: 注意:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。