ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:443.09KB ,
文档编号:1575287      下载积分:3.49 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1575287.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(考点13 平面向量数量积教师 .pdf)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

考点13 平面向量数量积教师 .pdf

1、玩转数学培优题型篇安老师培优课堂 考点考点 1 13 3平面向量数量积平面向量数量积 玩前必备 1两个向量的夹角 已知两个非零向量 a 和 b,作OA a,OB b,AOB(0180)叫作向量 a 与 b 的夹角,记作当0时,a 与 b 同向;当180时,a 与 b 反向;当90时,则称向量 a 与 b 垂直,记作 ab. 2平面向量的数量积 已知两个向量a和b, 它们的夹角为, 我们把|a|b|cos 叫作a与b的数量积(或内积), 记作ab, 即ab|a|b|cos . 3平面向量数量积的几何意义 数量积 ab 等于 a 的长度|a|与 b 在 a 方向上的射影|b|cos 的乘积或 b

2、的长度|b|与 a 在 b 方向上的射影|a|cos 的乘积 注意:b 在 a 方向上的投影为|b|cos ab |a| ,而 a 在 b 方向上的投影为|a|cos ab |b| ,投影是一个数量,它可 以为正,可以为负,也可以为 0. 4平面向量数量积的重要性质 (1) abab0; (2)当 a 和 b 同向时,ab|a|b|;当 a 和 b 反向时,ab|a|b|;特别地,aa |a|2,|a| aa; (3)cos ab |a|b|; 5平面向量数量积的坐标运算 设两个非零向量 a,b,a(x1,y1),b(x2,y2), (1) abx1x2y1y2,(2) |a|2x12y12或

3、|a| x12y12.(3) abx1x2y1y20. (4) cos x1x2y1y2 x12y12 x22y22 玩转典例 题型题型一一平面向量数量积的计算平面向量数量积的计算 例例 1(2020兖州区模拟)等腰直角三角形ABC中, 2 ACB ,2ACBC,点P是斜边AB上一点, 且2BPPA,那么(CP CACP CB ) A4B2C2D4 【解答】解:直角三角形ABC中, 2 ACB ,2ACBC,点P是斜边AB上一点,且2BPPA 玩转数学培优题型篇安老师培优课堂 如图所示: 121 333 CPCAABCACB , 22 22 212121 () ()2204 333333 CP

4、 CACP CBCACBCACBCACBCA CB , 故选:D 例例 2(2019新课标)已知(2,3)AB ,(3, )ACt ,| 1BC ,则(AB BC ) A3B2C2D3 【答案】C 【解析】(2,3)AB ,(3, )ACt ,(1,3)BCACABt , | 1BC ,30t 即(1,0)BC ,则2AB BC 故选:C 玩转跟踪 1.(2018新课标)已知向量a ,b 满足| 1a ,1a b ,则(2)(aab ) A4B3C2D0 【答案】B 【解析】向量a ,b 满足| 1a ,1a b ,则 2 (2)2213aabaa b ,故选:B 2.(2020上海)三角形A

5、BC中,D是BC中点,2AB ,3BC ,4AC ,则AD AB 【答案】 19 4 【解析】在ABC中,2AB ,3BC ,4AC , 由余弦定理得, 222 416911 cos 222416 ABACBC BAC AB AC , 1111 24 162 AB AC ,且D是BC的中点, 1 () 2 AD ABABACAB 21 () 2 ABAB AC 111 (4) 22 19 4 3.(2020 届山东省济宁市高三 3 月月考)如图,在边长为 2 的菱形 ABCD 中60BAD ,E 为CD中点, 则AE BD 、 玩转数学培优题型篇安老师培优课堂 【答案】1 【解析】将表示为,然

6、后利用向量的运算法则及数量积的定义即可求解 在菱形 ABCD 中,60BAD ,所以三角形 ABD 是正三角形,从而 ()AE BDADDEBD AD BD DE BD 故答案为 1 题型二题型二利用数量积求模长利用数量积求模长 例例 3(2020香坊区模拟)已知单位向量, a b 的夹角为,且 1 tan 2 ,若向量53mab ,则| (m ) A2B3C26D2或26 【解答】解: 1 tan 2 ,0,为锐角, 2 5 cos 5 ,且| | 1ab , 22 2 5 ( 53 )596 5146 5 1 12 5 maba b , |2m 故选:A 例例 4(2020江西省南昌市第十

7、中学校高三模拟(理) )设, x yR,向量( ,1),ax (2, ),by ( 2,2)c , 且ac ,/ /bc ,则ab _. 【答案】 10 【解析】a c 220 x 1x(1,1)a , / /bc 420y2y (2, 2)b (3, 1)ab |ab 22 3110 。 玩转跟踪 1.(2020全国 1 卷)设, a b为单位向量,且| 1ab ,则|ab _. 【答案】 3 玩转数学培优题型篇安老师培优课堂 【解析】整理已知可得: 2 abab ,再利用, a b 为单位向量即可求得2 1a b ,对ab rr 变形 可得: 22 2abaa bb ,问题得解. 【详解】

8、因为, a b 为单位向量,所以1ab rr 所以 222 2221ababaa bba b 解得:2 1a b ,所以 222 23ababaa bb ,故答案为: 3 2.(2020北京卷)已知正方形ABCD的边长为 2,点P满足 1 () 2 APABAC ,则|PD _; PB PD _ 【答案】(1). 5 (2).1 【解析】以点A为坐标原点,AB、AD所在直线分别为x、y轴建立平面直角坐标系,求得点P的坐标, 利用平面向量数量积的坐标运算可求得PD 以及PB PD 的值. 【详解】以点A为坐标原点,AB、AD所在直线分别为x、y轴建立如下图所示的平面直角坐标系, 则点0,0A、2

9、,0B、2,2C、0,2D, 111 2,02,22,1 222 APABAC , 则点2,1P,2,1PD ,0, 1PB , 因此, 2 2 215PD ,021 ( 1)1PB PD .故答案为: 5;1. 题型题型三三利用数量积求夹角利用数量积求夹角 例例 5(2020临汾模拟)已知夹角为的向量a ,b 满足()2a ab ,且| 2| 2ab ,则向量a ,b 的关 系是() A互相垂直B方向相同C方向相反D成120角 【解答】解:由()2a ab ,可得 2 2aa b ,即 2 | cos2aab , 即 2 22 1 cos2 ,所以cos1 ,即,所以a 、b 方向相反故选:

10、C 玩转数学培优题型篇安老师培优课堂 例例 6 (2020江西省南昌市新建二中高三二模 (理) ) 已知向量a ,b 满足1a ,1, 3b , 若2aab , 则a 与b 的夹角为_. 【答案】120 【解析】由2aab 知, 2 2aa b ,又1a ,即 2 1a 则 1a b ,所以 11 cos, 1 22 a b a b ab ,故夹角为120, 故答案为:120. 玩转跟踪 1.(2020全国 3 卷)已知向量a a,b b满足| 5a ,| 6b ,6a b ,则cos ,=a ab () A. 31 35 B. 19 35 C. 17 35 D. 19 35 【答案】D 【解

11、析】计算出aab 、ab 的值,利用平面向量数量积可计算出cos, a ab 的值. 【详解】5a ,6b , 6a b , 2 2 5619aabaa b . 2 22 2252 6367ababaa bb , 因此, 1919 cos, 5 735 aab a ab aab .故选:D. 2.(2020山东高三下学期开学)已知向量(4, 3),( 1,2)ab ,, a b 的夹角为,则sin_. 【答案】 5 5 【解析】依题意0,,所以 2 102 55 cos,sin1 cos 55|55 a b a b . 故答案为: 5 5 题型题型四四利用数量积求解垂直问题利用数量积求解垂直问

12、题 例例 7(2020河南省鹤壁市高级中学高三二模)已知非零向量a ,b 满足|ab |=|,则“ 22abab ”是 “ab ”的() 玩转数学培优题型篇安老师培优课堂 A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解: 【答案】C 【解析】 22 2222 |22224444ababababaa bbaa bb =, | | 0ab ,等价于0a bab ,故选 C。 例例 8(2020吉林省高三二模(理) )已知(1,3),(2,2),( , 1)abcn ,若()acb ,则n等于() A3B4C5D6 【答案】C 【解析】由题可知(1,4)acn ,因为()acb

13、,所以有122 40n ,得5n 。 玩转跟踪 1.(2020全国 2 卷)已知单位向量a ,b 的夹角为 45,k a b 与a 垂直,则k=_. 【答案】 2 2 【解析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k的值. 【详解】由题意可得: 2 1 1 cos45 2 a b ,由向量垂直的充分必要条件可得:0k a ba , 即: 2 2 0 2 kaa bk ,解得: 2 2 k .故答案为: 2 2 2.(2020 届山东省淄博市高三二模)已知向量a =(4,3) ,b =(6,m) ,且ab ,则 m=_. 【答案】8. 【解析】向量4,36,abmab

14、(), (),则04 6308a bmm , . 题型题型五五利用数量积求射影利用数量积求射影 例例 9 9(湖北,7)已知点 A(1,1),B(1,2),C(2,1),D(3,4),则向量AB 在CD 方向上的投影为() A. 3 2 2 B. 3 15 2 C3 2 2 D3 15 2 答案A 解析由已知得AB (2,1),CD (5,5),因此AB 在CD 方向上的投影为 AB CD |CD | 15 5 2 3 2 2 . 玩转数学培优题型篇安老师培优课堂 玩转跟踪 1.(2020天水市第一中学高三月考(文) )已知 12 , e e 为单位向量且夹角为 3 ,设 12a ee , 2

15、b e ,a 在b 方向上的投影为_ 【答案】 3 2 【解析】由题可知 1,b 故,a 在b 方向上的投影为 即答案为 3 2 . 玩转练习 1.(2020新建区校级模拟)如图,在ABC中,,3,| 2ADAB DCBD AD ,则AC AD 的值为() A3B8C12D16 【解答】解:在ABC中,,3,| 2ADAB DCBD AD , ()AC ADABBCAD (4)ABBD AD 4()ABADABAD ( 34)ABAD AD 2 34AB ADAD 2 04216;故选:D 2.(2020内蒙古模拟)已知向量(1,2)ab ,( 3,0)ab ,则(a b ) A1B1C3D3

16、 【解答】解:因为(1,2)ab ,( 3,0)ab , 2( 2a ,2)( 1,1)a ;2(4b ,2)(2,1)b ; ( 1)21 11a b ;故选:B 3 (2020随州模拟)已知向量a ,b 满足| | 2aab ,向量b 在向量a 方向上的投影为 3,则向量a 与 玩转数学培优题型篇安老师培优课堂 向量b 的夹角为() A30B45C60D90 【解答】解:向量a ,b 满足| | 2aab ,向量b 在向量a 方向上的投影为 3, 设向量a 与向量b 的夹角为,则 222 24aaa bb ,| cos3b , | 2 3b ,2 3cos3, 3 cos 2 ,30,故选

17、:A 4(2020湘潭一模) 在平行四边形ABCD中,60BAD,3ABAD,E为线段CD的中点, 若6AE AB , 则(AC BD ) A4B6C8D9 【解答】解:如图,设ADa; 由题得: 2 2 111 ()3cos60(3 )6 222 AE ABADAB ABAD ABABaaa , 1a(负值舍) ; 22 22 () ()138AC BDABADADABADAB ;故选:C 5 (2020齐齐哈尔一模)已知两个单位向量a ,b 的夹角为120,(1)ctatb 若1a c 则实数t的 值为() A1B1C2D2 【解答】解:两个单位向量a ,b 的夹角为120, 1 2 a

18、b , 2 1a ,又(1)ctatb ,1a c , 2 1 (1) (1)(1)1 2 a tatbtata btt ,解得1t 故选:A 6.(2020福州一模)已知两个单位向量 12 ,e e ,若 121 (2)eee ,则 12 ,e e 的夹角为() A 2 3 B 3 C 4 D 6 【解答】解:由题意得,两个单位向量 12 ,e e , 因为 121 (2)eee ,所以 121 (2)0eee ,所以 2 112 21ee e ,所以 1 cose , 12 2 12 1 2| e e e ee , 玩转数学培优题型篇安老师培优课堂 又因为 1 e , 2 0e ,所以 1

19、 e , 2 3 e ,故选:B 7.(2020湖南省长沙市明达中学高三二模(理)已知向量a 和b 的夹角为 3 ,且2,3ab ,则 (2)(2 )ab ab () A10B7 C4D1 【答案】D 【解析】 22abab 22 23 2aa bb 8+3cos 3 a b 188+323 1 2 181, 故选 D。 8 (2020江西省名高三第二次大联考(理) )若1a ,2b ,则ab 的取值范围是() A1,9B 1,9C1,3D1,3 【答案】C 【解析】设向量a ,b 的夹角为,因为1a ,2b , 2 22 254cos1,9abaa bb ,则 2 1,3abab 。 9 (

20、2020黑龙江哈尔滨师大附中高三模拟(理) )已知在边长为 3 的等边ABC中, 1 2 BDDC ,则 AD AC () A6B9C12D6 【答案】A 【解析】 1 ()() 3 AD ACABACBDABABCC 1 3 AB ACBACC 1 | |cos| |cos 3 ABACAACCBC 111 3 33 36 232 。 10 (2020河南省实验中学高三二测(理) )若| 3a ,| 2b ,237ab ,则a 与 b 的夹角为 _. 玩转数学培优题型篇安老师培优课堂 【答案】 3 【解析】设a 与b 的夹角为,则 222 |2 |4494 3 2 cos4 437abaa

21、bb ,得 1 cos 2 ,所以 3 。 11 (2020北京市西城区高三一模)若向量 2 21axbx , ,满足 3a b ,则实数x的取值范围是 _. 【答案】3,1 【解析】 2 21axbx , ,故 2 23a bxx ,解得31x ,故答案为3,1。 12(2020四川省成都市树德中学高三二诊 (理) ) 已知向量AB = (1, 2) ,AC = (-3, 1) , 则AB BC =_ 【答案】-6 【解析】AB =(1,2) ,AC =(-3,1) ,BC ACAB =(-4,-1) , 则AB BC =1(-4)+2(-1)=-6。 13 (2020广西师大附属外国语学校

22、高三一模(理) )已知, a b 为两个单位向量,且向量a b 与b 垂直, 则23ab =_ 【答案】5 【解析】由题:向量a b 与b 垂直,0abb ,解得 1a b , 所以 2 22 232341295ababaa bb 。 14 (2020江西省南昌市第十中学校高三模拟(理) )设, x yR,向量( ,1),ax (2, ),by ( 2,2)c , 且ac ,/ /bc ,则ab _. 【答案】 10 【解析】a c 220 x 1x(1,1)a , / /bc 420y2y (2, 2)b (3, 1)ab |ab 22 3110 。 15.(2020福建省泉州市高三质检(理) )已知向量,2ax ,2,1b ,且 /a b ,则a _ 玩转数学培优题型篇安老师培优课堂 【答案】2 5 【解析】由 /ab rr 得,12 20 x ,即4x ,所以 22 |42202 5a 。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|