1、新人教版高中数学优质公开课精品教案及点评资料 随机事件的概率教学设计 教材:北师大版高中数学必修教材:北师大版高中数学必修 3 3 第三章第一节第一课时第三章第一节第一课时 授课教师:授课教师:焦作市第十一中学焦作市第十一中学李李 XXXX 一、教学背景分析一、教学背景分析 1教材分析:教材分析: 新教材在教学内容的编排上,采用了模块化、螺旋上升的方式,学生在初中阶段已 经接触过随机事件、不可能事件、必然事件的概念,在必修三第一章学生刚刚又学习了 统计的内容,了解了频数、频率等概念,因此本节课是对已学内容的深化和延伸;同时, 本节课对于后面学习的古典概型、 几何概型以及选修 2-3 离散型随机
2、变量的分布列等内 容又是一个铺垫,具有承上启下的地位。 2学情分析:学情分析: 学生在初中阶段学习了概率的初步知识,对频率与概率的关联有一定的认识,对于 高二的学生,他们具备了一定的观察、归纳、概括能力,但他们不知道如何利用频率去 估计概率,这是教学中的一大难点;另外,随机事件发生的随机性和规律性是如何辩证 统一的,这是教学中的又一大难点 二、教学目标设计二、教学目标设计 1 1、知识与技能、知识与技能目标目标: (1)进一步认识随机现象,了解随机事件发生的不确定性和频率的稳定性; (2)正确理解概率的统计定义,明确概率与频率的区别和联系,掌握利用频率估 计概率的思想方法; (3)通过抛硬币试
3、验,获取数据,归纳总结试验结果,体会随机事件发生的随机 性和规律性,使学生对对立统一的辨证关系有进一步的认识 2 2、过程与方法、过程与方法目标目标: (1)通过动手试验,体会随机事件发生的随机性和规律性; (2)在试验、探究和讨论过程中,学会利用频率估计概率的思想方法 3 3、情感态度与价值观目标:、情感态度与价值观目标: (1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界 的联系; (2)通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性 新人教版高中数学优质公开课精品教案及点评资料 与必然性的对立统一; (3)通过本节课浓厚的生活背景,指导学生形成正
4、确的价值观和人生观 根据上述教材背景分析根据上述教材背景分析,结合教学大纲和学情分析结合教学大纲和学情分析,我确立了如下的教学重点我确立了如下的教学重点、难难 点:点: 三、教学重难点三、教学重难点 (1)重点:通过抛掷硬币试验了解概率的统计定义、明确其与频率的区别和联系; (2)难点:利用频率估计概率,体会随机事件发生的随机性和规律性. 四、教法学法设计四、教法学法设计 针对本节课的特点, 在教法上, 采用以教师为主导, 学生为主体的探究式教学方法; 在教学过程中,注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学 们动手试验,让同学们积极主动分享自己的发现和感悟;在教学手段上,
5、我灵活运用黑 板板书和多媒体展示,激发学生的创造力,活跃了气氛,加深了理解. 教学用具:硬币数十枚,表格,幻灯片,计算机及多媒体教学. 五、教学基本流程:五、教学基本流程: 六、教学情境设计:六、教学情境设计: (一)创设情境,引入新知(一)创设情境,引入新知 导入语导入语:我们生活的世界充满着不确定性,从抛硬币、玩扑克等简单的游戏,到复 杂的社会现象;从体育比赛,到大自然的千变万化,我们无时无刻不面临着不确定性, 正因为不确定性的存在,而让我们的生活变得丰富多彩。 今天,我们从两场比赛说起:播放视频 生活实例 1:张梦雪里约奥运夺首金 生活实例 2:女排逆转夺冠 设计意图设计意图:从刚刚过去
6、的里约奥运会的实例引入,一方面奥运会是备受关注的社会 热点话题,可以增强学生的国家自豪感和荣誉感,尤其是女排精神,可以激发学生永不 服输, 坚持到底的学习动力; 另一方面可以激发学生的听课兴趣, 通过身边的生活实例, 合作交流、探究新知 自主练习、应用新知 创设情境、引入新知 课堂小结、再现新知 课下探究、拓展新知 新人教版高中数学优质公开课精品教案及点评资料 让学生体会学习随机事件及其概率的必要性. 思考一:思考一: 1、在张梦雪射击前,你能知道她会获得冠军吗? 2、在比赛前,你能猜到中国女排能再次夺得金牌吗? 设计意图设计意图:抓住生活实例中包含的数学思维部分进行提问,引导学生用数学的眼光
7、 观察、认识我们生活的世界,对生活中的现象和感性认识进行理性思考,并且这两个问 题在学生看来是很容易回答的,这恰恰说明概率的雏形在生活实践中已经产生,引出本 节课的课题随机事件的概率. 思考二:思考二: 1、既然能否夺冠是随机事件,为什么派张梦雪参加奥运会,而不是派其他射击运 动员参加? 2、张梦雪“击中靶心的可能性比其他射击运动员大”这一生活经验是如何得到的 呢? 学生:学生:根据以往的射击数据,统计其击中靶心的频率 教师:教师:张梦雪击中靶心的频率是怎么计算的呢? = 击中靶心的次数 击中靶心的频率 射击总次数 ,射击一次相当于做一次试验,在生活中我们通 常用射击试验命中的频率来估计命中的
8、概率,那么这种方法是否具有普遍性? 设计意图:设计意图:基于初中的学习,有些学生已经具备了用试验频率来估计概率的经验, 但对于“为什么可以这样做” ,缺乏思考因此从学生熟悉的命中率入手,为接下来探 讨随机事件的概率做准备 (二)(二)合作交流,探究新知合作交流,探究新知 1 1、动手试验,探究随机事件的可能性大小、动手试验,探究随机事件的可能性大小 (1)试验目的:探究随机事件“抛掷一枚硬币,正面朝上”发生的可能性大小 (2)试验要求:从约 30cm 的高度下抛硬币,让其自由下落在桌面上; 小组 成员两两结合, 一人抛掷硬币时另一人帮其记录, 每人掷 20 次, 共 80 次, 认真记录 “正
9、 面向上”出现的次数,组长汇总本组的总次数 学生活动学生活动:由学生自己动手做试验,亲身体验随机事件发生的随机性及其频率的稳 定性,经历动手试验分析数据观察规律总结结论的探究过程 设计意图设计意图:分组试验是本节课最重要的环节,不能忽略,这也是本节课教学中最难 控制的一个环节必须把试验的自主权交给学生,让同学们亲历抛掷硬币的随机过 新人教版高中数学优质公开课精品教案及点评资料 程,唯有如此,才能建构起正确的随机观,才能辩证的理解随机性中的规律性 2 2、汇总数据,观察频率的特征、汇总数据,观察频率的特征 设置问题:对比研究,探讨正面朝上的规律性(教师引导、学生归纳) 学生活动:学生活动:同学们
10、先独立思考下面几个问题,然后小组讨论交流,举手发言 (1)仔细观察上表,频率呈现出什么样的特征?举手发言. 生:生:频率基本上在常数 0.5 附近摆动,个别偏离常数较大. (2)请同学们小组讨论频率偏离常数较大的原因,派代表发言. 生:生:没有在相同条件下做试验; 由于随机事件本身的不确定性,当试验次数较少时,个别偏离较大是 正常情况. (3)增加试验次数,继续观察频率有什么变化? 生生:随着试验次数的增加,频率摆动的幅度具有减小的趋势,并逐渐稳定于 常数 0.5. 设计意图:设计意图:设置“问题串” ,层层深入,步步递进,让学生在动手试验和数据分析 中总结频率的随机性与稳定性, 以及要注意的
11、两个条件 “相同条件下” 、“大量重复试验” , 最终得出频率在大量重复试验下的规律性,符合学生的认知规律 3 3、观察分析,猜想频率的规律性、观察分析,猜想频率的规律性 借助计算机模拟抛 10000 次的试验,通过对比寻找在大量重复试验下的频率呈现出 的规律性: 新人教版高中数学优质公开课精品教案及点评资料 随着试验次数的增加,频率摆动的幅度有减小的趋势,并逐渐稳定于常数 0.5 教师:教师:有没有人亲手做过这么多次试验呢? 历史上一些抛掷硬币的试验结果: (借机德育教育:这些数学家们正因为专注于一 件事,在平凡的事情中创造了不平凡的业绩,这种持之以恒,科学严谨的探究精神也是 我们所要学习的
12、) 试验者 抛 掷 次 数(n) 正 面 向 上 的 次 数 (频数 m) 频率 ( n m ) 棣莫弗204810610.5181 布丰404020480.5069 费勒1000049790.4979 皮尔逊24000120120.5005 罗 曼 诺 夫斯基 80640401730.4982 学生活动:学生活动:先独立思考下面两个问题,然后小组讨论交流,小组代表举手发言 能不能用某次试验的频率作为硬币正面向上的概率?为什么? 用哪个量作为硬币正面向上的概率比较合适呢? 结论:结论:在相同条件下,大量重复抛掷硬币试验时,出现正面向上的频率在常数 0.5 附近摆动,随着试验次数的增加,正面向上
13、的频率稳定于常数 0.5,这个常数 0.5 就是 程序初始化 m=0 m用于存储硬币为正面的次数 For n=1 to 10000 k=int(rnd()+0.5) 变量k为0或1的等可能随机数 if k=1 then m=m+1 end if f=m/n 绘制点(n,f) If n1 then 连接上一个点 End if Next 新人教版高中数学优质公开课精品教案及点评资料 硬币正面向上的概率. 设计意图设计意图:学生亲历随机试验过程,更能理解试验的随机性,并体会出大量重复试 验后的规律性,结合历史上数学家所做的努力,及电脑模拟,加深对频率的稳定性的认 识,并意识到概率概念的雏形频率稳定在
14、 0.5 附近,这个 0.5 即抛掷一枚硬币“正面 朝上”的概率,引出概率定义建构主义要求在课堂上体现概念、思想方法的自主建构 过程,让学生去尝试、探索,总结、沉淀,内化成知识结构 4 4、感知升华、感知升华,概括结论,概括结论 学生活动学生活动: 请同学们根据试验结论, 尝试自己概括出概率的统计定义, 先单独思考, 然后在练习本上写出来. (1 1)概率的统计定义)概率的统计定义 在相同条件下,大量重复进行同一试验时,随机事件 A 发生的频率会在某一个常数 附近摆动,即随机事件 A 发生的频率具有稳定性我们把这个常数叫做随机事件 A 的概 率,记作 P(A) 思考:随机事件 A 的概率 P(
15、A)的取值范围是多少?随机事件的概率可以为 0 或 1 吗?你能举例说明吗? 如:在区间(0,1)内随机取一个实数,所取实数恰为 0.5 这是随机事件吗?它发生 的概率是多少呢? 设计意图设计意图:充分的发挥学生的主体地位,让学生学会分析问题,体验合作精神,通 过教师的补充使学生对概念更清晰、理解更透彻通过计算机模拟试验,再次让学生体 会用大量重复试验下的频率估计概率的思想方法. (2 2)求随机事件概率的方法)求随机事件概率的方法 生:生:大量重复试验下的频率估计概率 (3 3)频率和概率有何联系和区别?)频率和概率有何联系和区别? 学生活动:学生活动:讨论交流后,找学生代表阐述自己的观点,
16、教师做一补充 联系:频率是概率的近似值,随着试验次数的增加,频率会稳定在概率附近; 区别:频率反映了随机事件出现的频繁程度,是随机的,试验前不能确定; 概率是确定的,是客观存在的,与试验无关. 设计意图设计意图: 通过投影思考问题, 引导学生结合试验过程得出结论, 锻炼学生的发现、 合作、归纳的能力;通过投影结论,规范数学语言.教师结合实验过程对频率与概率的 区别与联系以及求随机事件的概率的方法进行再探讨,突出本节课重点,突破难点. (三)自主练习,应用新知(三)自主练习,应用新知 新人教版高中数学优质公开课精品教案及点评资料 例例 1 1:判断下列说法的对错: (1)在对一批种子进行的发芽试
17、验中,抽取的 10 粒种子全部发芽,所以该种子的 发芽率为 100%; (2)乒乓球比赛中,小李比小王获胜的概率大,若两人打一局比赛,小李一定获 胜; (3)因为抛掷一枚硬币出现正面的概率是 0.5,所以抛掷 12000 次时,出现正面的 次数很有可能接近 6000 次; (4)某种彩票的中奖率为 1 1000 ,那么,买 1000 张彩票一定能中奖. 设计意图设计意图:通过种子发芽、体育比赛、抛掷硬币,彩票中奖等随机事件,让学生对 生活中的随机事件的概率有了重新的认识,进一步了解了概率的定义及频率与概率的区 别与联系.并借机对学生进行人生观和价值观的教育. 例例 2. 某射手在同一条件下进行
18、射击,结果如下: 射击次数n10205010 0 200500 击中靶心的次 数m 8194492178455 击中靶心的频 率m/n (1)计算表中击中靶心的各个频率; (2)这个射手射击一次,击中靶心的概率约为多少? (3)这位射手击中靶心的概率为 0.9,那么他射击 10 次一定能击中靶心 9 次吗? 设计意图设计意图:通过射击的命中率,让学生学会如何利用频率估计概率,了解求生活中 随机事件的概率的方法. (四)课堂小结、精华再现(四)课堂小结、精华再现 (1)这节课你都学到了哪些知识? (2)这节课你都掌握了什么思想方法? (3)通过本节课的学习,对你的人生观、价值观有什么影响? 设计
19、意图设计意图:引导学生总结本节课所学内容,并分享自己的一些体会,对本节课知识 进行再回顾,再梳理,再理解(鼓励同学们自由发言). 结束语:结束语: 新人教版高中数学优质公开课精品教案及点评资料 世界上很多的事在我们看来都带有偶然性,但在大量的偶然现象背后,隐藏着必然 的规律,概率就是这种偶然中的一种必然. 因此,当我们面临不确定的随机事件时,我们要抓住机遇,挑战不可能,成就 自己精彩的人生. (五)课下探究、拓展新知(五)课下探究、拓展新知 探究 1:站错队 在超市购物后结账,人多的时候,多数情况是自己站的队伍慢,其它队伍快,总让 人很是烦恼,你能利用所学的概率知识消除我的烦恼吗? 探究 2:
20、电脑在今天已走进了千家万户,大大提高了人们的学习和工作效率当你 的指尖敲打着电脑键盘时,你是否想过,键盘上的字母为什么不按顺序排列? 我们不妨一起来做一次统计,先选取一篇英文文章,然后统计总的字母数,每个字 母出现的频数与频率,你能发现什么? 设计意图设计意图:通过身边两个学生很熟悉的问题,更能激发学生的求知欲与兴趣,并能 够让学生通过思考探究,跳一跳能够摘到桃子,鼓励学生继续学习 七、教学反思:七、教学反思: 本节课内容非常贴近生活,因此丰富的问题情境会激发学生浓厚的兴趣,在教学时 通过创设情境、引入新知合作交流、探究新知自主练习、应用新知课堂小 结、再现新知课下探究、拓展新知等环节,引导学
21、生逐步掌握知识,提高能力,本 节课在教学中充分体现以教师为主导,以学生为主体的原则. 在教学中提供恰当的问题情景,使学生在自主探索与合作交流中成为数学的主人, 教师成为数学学习的组织者、引导者与合作者,在教学中注重学生的合作和交流活动, 在活动中促进知识的学习,让学生澄清生活中的一些对概率的错误认识.引导学生认识 到试验频率并不等同于概率,认识大量重复试验下的频率逐渐稳定于概率,频率是概率 的近似值,而概率是频率的稳定值. 虽然本节课教学效果总体还不错,但是还有不尽如人意的地方.教完之后有很多想 法.我想下次如果再上这节课时,我将给学生更多时间,让学生们更充分的融会到自由 学习,自主思考,交流合作中提炼结果的学习氛围,在教学中应想办法让学生更积极的 参与进来;应考虑设计不同的问题,让不同层次的学生得到不同的发展;多让学生举例 子,用生活中的元素来教学,用数学知识解决生活中的问题,更能提高学生的数学学科 的核心素养等等,这需要我在以后教学中不断改进,学习提高. 总之,上完这节课后我的感觉就是:用新教材的理念,把课堂交给学生,把时间交 新人教版高中数学优质公开课精品教案及点评资料 给学生,也就把知识交给了学生
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。