ImageVerifierCode 换一换
格式:PDF , 页数:185 ,大小:3.28MB ,
文档编号:1668733      下载积分:5.99 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1668733.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川三人行教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2021年高考数学汇编(个人收集仅供参考).pdf)为本站会员(四川三人行教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2021年高考数学汇编(个人收集仅供参考).pdf

1、2021 年普通高等学校招生全国统一考试 理科数学乙卷 注意事项: 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上. 2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净 后, 再选涂其他答案标号. 回答非选择题时, 将答案写在答题卡上. 写在本试卷上无效. 3. 考试结束后, 将本试卷和答题卡一并交回. 一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分, 在每小题给出的四个选项中, 只有一项符合题目要求. 1. 设 2(z + z) + 3(z z) = 4 + 6i, 则 z =( ). A: 1 2i

2、B: 1 + 2iC: 1 + iD: 1 i 2. 已知集合 S = s | s = 2n + 1,n Z,T = t | t = 4n + 1,n Z, 则 S T =( ). A: B: SC: TD: Z 3. 已知命题 p : x R,sinx 1 命题 q : x R,e|x| 1, 则下列命题中为真命题的是 ( ). A: p qB: p qC: p qD: (p q) 4. 设函数 f(x) = 1 x 1 + x, 则下列函数中为奇函数的是 ( ). A: f(x 1) 1B: f(x 1) + 1C: f(x + 1) 1D: f(x + 1) + 1 5. 在正方体 AB

3、CD A1B1C1D1中, P 为 B1D1的中点, 则直线 PB 与 AD1所成的角为 ( ). A: 2 B: 3 C: 4 D: 6 6. 将 5 名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶 4 个项目进行培训, 每名志愿者只分配 到 1 个项目, 每个项目至少分配 1 名志愿者. 则不同的分配方案共有 ( ). A: 60 种B: 120 种C: 240 种D: 480 种 7. 把函数 y = f(x) 图像上所有点的横坐标缩短到原来的 1 2 倍, 纵坐标不变, 再把所得曲线向右平移 3 个单 位长度, 得到函数 y = sin(x 4 ) 的图像, 则 f(x) =(

4、 ). A: sin(x 2 7 12 )B: sin(x 2 + 12) C: sin(2x 7 12 )D: sin(2x + 12) 8. 在区间 (0,1) 与 (1,2) 中各随机取 1 个数, 则两数之和大于 7 4 的概率为 ( ). A: 7 9 B: 23 32 C: 9 32 D: 2 9 9. 魏晋时期刘徽撰写的海岛算经是关于测量的数学著作, 其中第一题是测量海岛的高. 如图, 点 E,H,G 在水平线 AC 上, DE 和 FG 是两个垂直于水平面且等高的测量标杆的高度, 称为“表高”, EG 称为“表距”, GC 和 EH 都称为“表目距”, GC 与 EH 的差称为

5、“表目距的差”. 则海岛的高 AB =( ). A: 表高 表距 表目距的差 + 表高B: 表高 表距 表目距的差 表高 2021 年高考数学全国乙卷理科真题2 C: 表高 表距 表目距的差 + 表距D: 表高 表距 表目距的差 表距 B A D EHG F C (第 9 题图) 10. 设 a = 0, 若 x = a 为函数 f(x) = a(x a)2(x b) 的极大值点, 则 ( ). A: a bC: ab a2 11. 设 B 是椭圆 C : x2 a2 + y2 b2 = 1 (a b 0) 的上顶点, 若 C 上的任意一点 P 都满足 |PB| 2b, 则 C 的离 心率的取

6、值范围是 ( ). A: 2 2 ,1)B: 1 2,1) C: (0, 2 2 D: (0, 1 2 12. 设 a = 2ln1.01,b = ln1.02,c = 1.04 1, 则 ( ). A: a b cB: b c aC: b a cD: c a 0) 的一条渐近线为 3x + my = 0, 则 C 的焦距为 . 14. 已知向量 a = (1,3),b = (3,4), 若 (a b) b, 则 =. 15. 记 ABC 的内角 A,B,C 的对边分别为 a,b,c, 面积为 3,B = 60,a2 + c2= 3ac, 则 b =. 16. 以图 为正视图, 在图 中选两个

7、分别作为侧视图和俯视图, 组成某个三棱锥的三视图, 则所 选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可). 2 1 22 11 2 22 2 图 1 图 2图 3 图 4 图 5 (第 16 题图) 3微信公众号:数学竞赛的那些事儿 三、解答题: 共 70 分. 解答应写出文字说明、证明过程或演算步骤. 第 1721 题为必考题, 每个试题考生都 必须作答 第 22、23 题为选考题, 考生根据要求作答. (一) 必考题: 共 5 小题, 每小题 12 分, 共 60 分. 17. (12 分) 某厂研制了一种生产高精产品的设备, 为检验新设备生产产品的某项指标有无提高, 用一台旧

8、设备和一台新 设备各生产了 10 件产品, 得到各件产品该项指标数据如下: 旧设备9.810.310.010.29.99.810.010.110.29.7 新设备10.110.410.110.010.110.310.610.510.410.5 旧设备和新设备生产产品的该项指标的样本平均数分别记为 x 和 y, 样本方差分别记为 s2 1和 s22. (1) 求 x,y,s2 1,s22 (2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 (如果 y x 2 r s2 1+ s22 2 , 则认为新设 备生产产品的该项指标的均值较旧设备有显著提高, 否则不认为有显著提高). 18.

9、 (12 分) 如图,四棱锥PABCD的底面是矩形,PD 底面ABCD,PD = DC = 1,M 为BC 的中点,且PB AM. (1) 求 BC (2) 求二面角 A PM B 的正弦值. P AB M C D (第 18 题图) 19. (12 分) 记 Sn为数列 an 的前 n 项和, bn为数列 Sn 的前 n 项积, 已知 2 Sn + 1 bn = 2. (1) 证明: 数列 bn 是等差数列 (2) 求 an 的通项公式. 2021 年高考数学全国乙卷理科真题4 20. (12 分) 设函数 f(x) = ln(a x), 已知 x = 0 是函数 y = xf(x) 的极值

10、点. (1) 求 a (2) 设函数 g(x) = x + f(x) xf(x) , 证明: g(x) 0) 的焦点为 F, 且 F 与圆 M : x2+ (y + 4)2= 1 上点的距离的最小值为 4. (1) 求 p (2) 若点 P 在 M 上, PA,PB 是 C 的两条切线, A,B 是切点, 求 PAB 面积的最大值. (二) 选考题: 共 10 分. 请考生在第 22、23 题中任选一题作答, 如果多做, 则按所做的第一题计分. 22. 【选修 4 4: 坐标系与参数方程】(10 分) 在直角坐标系 xOy 中, C 的圆心为 C(2,1), 半径为 1. (1) 写出 C 的

11、一个参数方程 (2) 过点 F(4,1) 作 C 的两条切线. 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求这两条切线的极 坐标方程. 23. 【选修 4 5: 不等式选讲】(10 分) 已知函数 f(x) = |x a| + |x + 3|. (1) 当 a = 1 时, 求不等式 f(x) 6 的解集 (2) 若 f(x) a, 求 a 的取值范围. 2021 年普通高等学校招生全国统一考试 理科数学乙卷 (参考答案) 注意事项: 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上. 2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑.

12、如需改动, 用橡皮擦干净 后, 再选涂其他答案标号. 回答非选择题时, 将答案写在答题卡上. 写在本试卷上无效. 3. 考试结束后, 将本试卷和答题卡一并交回. 一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分, 在每小题给出的四个选项中, 只有一项符合题目要求. 1. 设 2(z + z) + 3(z z) = 4 + 6i, 则 z =( ). A: 1 2iB: 1 + 2iC: 1 + iD: 1 i 答案:C. 解析:设 z = a + bi, 则 z = a bi, 2(z + z) + 3(z z) = 4a + 6bi = 4 + 6i, 所以 a = 1,b

13、 = 1, 所以 z = 1 + i. 2. 已知集合 S = s | s = 2n + 1,n Z,T = t | t = 4n + 1,n Z, 则 S T =( ). A: B: SC: TD: Z 答案:C. 解析:s = 2n + 1,n Z: 当 n = 2k,k Z 时, S = s | s = 4k + 1,k Z 当 n = 2k + 1,k Z 时, S = s | s = 4k + 3,k Z. 所以 T S, S T = T. 故选 C. 3. 已知命题 p : x R,sinx 7 4 的概率. 绘图如下所示. O y x1 1 2 N M A DC 故 P = S阴

14、 S正 ABCD = 1 1 1 2AM AN 1 1 = 1 1 2 3 4 3 4 1 = 23 32. 9. 魏晋时期刘徽撰写的海岛算经是关于测量的数学著作, 其中第一题是测量海岛的高. 如图, 点 E,H,G 在水平线 AC 上, DE 和 FG 是两个垂直于水平面且等高的测量标杆的高度, 称为“表高”, EG 称为“表距”, GC 和 EH 都称为“表目距”, GC 与 EH 的差称为“表目距的差”. 则海岛的高 AB =( ). A: 表高 表距 表目距的差 + 表高B: 表高 表距 表目距的差 表高 C: 表高 表距 表目距的差 + 表距D: 表高 表距 表目距的差 表距 B A

15、 D EHG F C (第 9 题图) 7微信公众号:数学竞赛的那些事儿 答案:A. 解析:连接 DF 交 AB 于 M, 则 AB = AM + BM. B A D EHG F C M 记 BDM = ,BFM = , 则 MB tan MB tan = MF MD = DF. 而 tan = FG GC , tan = ED EH . 所以 MB tan MB tan = MB( 1 tan 1 tan) = MB ( GC FG EH ED ) = MB GC EH ED . 故 MB = ED DF GC EH = 表高 表距 表目距的差 , 所以高 AB = 表高 表距 表目距的差

16、+ 表高. 10. 设 a = 0, 若 x = a 为函数 f(x) = a(x a)2(x b) 的极大值点, 则 ( ). A: a bC: ab a2 答案:D. 解析:若 a 0, 其图像如图 (1), 此时, 0 a b 若 a 0, 其图像如图 (2), 此时, b a 0. O y x ab O y x a b (1)(2) 综上, a2 b 0) 的上顶点, 若 C 上的任意一点 P 都满足 |PB| 2b, 则 C 的离 心率的取值范围是 ( ). A: 2 2 ,1)B: 1 2,1) C: (0, 2 2 D: (0, 1 2 答案:C. 解析:由题意, 点 B(0,b

17、). 设 P(x0,y0), 则 x2 0 a2 + y2 0 b2 = 1 x2 0= a2(1 y2 0 b2 ). 故 |PB|2= x2 0+ (y0 b) 2 = a2(1 y2 0 b2 ) + y2 0 2by0+ b 2 = c 2 b2 y2 0 2by0+ a 2 + b2,y0 b,b. 由题意, 当 y0= b 时, |PB|2最大. 则 b 3 c2 b, b2 c2, a2 c2 c2, e = c a 2 2 , 即 e (0, 2 2 . 12. 设 a = 2ln1.01,b = ln1.02,c = 1.04 1, 则 ( ). A: a b cB: b c

18、 aC: b a cD: c a b 2021 年高考数学全国乙卷理科真题解析8 答案:B. 解析:设 f(x) = ln(1 + x) 1 + 2x + 1, 则 b c = f(0.02). 易得 f(x) = 1 1 + x 2 21 + 2x = 1 + 2x (1 + x) (1 + x)1 + 2x . 当 x 0 时, 1 + x = p(1 + x)2 1 + 2x, 故 f(x) 0. 所以 f(x) 在 0,+) 上单调递减. 所以 f(0.02) f(0) = 0. 故 b c. 再设 g(x) = 2ln(1 + x) 1 + 4x + 1, 则 a c = g(0.0

19、1). 易得 g(x) = 2 1 + x 4 21 + 4x = 2 1 + 4x (1 + x) (1 + x)1 + 4x . 当 0 x g(0) = 0. 故 a c. 综上, a c b. 二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分. 13. 已知双曲线 C : x2 m y2= 1 (m 0) 的一条渐近线为 3x + my = 0, 则 C 的焦距为 . 答案:4. 解析:易知双曲线渐近线方程为 y = b ax, 由题意得 a 2 = m,b2= 1, 且一条渐近线方程为 y = 3 m x, 则有 m = 0 (舍去), m = 3. 故焦距为 2c

20、= 4. 14. 已知向量 a = (1,3),b = (3,4), 若 (a b) b, 则 =. 答案:3 5. 解析:由题意得 (a b) b = 0, 即 15 25 = 0, 解得 = 3 5. 15. 记 ABC 的内角 A,B,C 的对边分别为 a,b,c, 面积为 3,B = 60,a2 + c2= 3ac, 则 b =. 答案:22. 解析:SABC= 1 2acsinB = 3 4 ac = 3, 所以 ac = 4. 由余弦定理, b2= a2+ c2 ac = 3ac ac = 2ac = 8, 所以 b = 22. 16. 以图 为正视图, 在图 中选两个分别作为侧视

21、图和俯视图, 组成某个三棱锥的三视图, 则所 选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可). 答案: 或 . 解析:由高度可知, 侧视图只能为 或 . P A B C P A B C (1)(2) 9微信公众号:数学竞赛的那些事儿 侧视图为 , 如图 (1). 平面 PAC 平面 ABC, PA = PC = 2,BA = BC =5,AC = 2. 俯视图为 . 俯视图为 , 如图 (2). PA 平面 ABC, PA = 1,AC = AB = 5,BC = 2. 俯视图为 . 2 1 22 11 2 22 2 图 1 图 2图 3 图 4 图 5 (第 16 题图) 三、解

22、答题: 共 70 分. 解答应写出文字说明、证明过程或演算步骤. 第 1721 题为必考题, 每个试题考生都 必须作答 第 22、23 题为选考题, 考生根据要求作答. (一) 必考题: 共 5 小题, 每小题 12 分, 共 60 分. 17. (12 分) 某厂研制了一种生产高精产品的设备, 为检验新设备生产产品的某项指标有无提高, 用一台旧设备和一台新 设备各生产了 10 件产品, 得到各件产品该项指标数据如下: 旧设备9.810.310.010.29.99.810.010.110.29.7 新设备10.110.410.110.010.110.310.610.510.410.5 旧设备和

23、新设备生产产品的该项指标的样本平均数分别记为 x 和 y, 样本方差分别记为 s2 1和 s22. (1) 求 x,y,s2 1,s22 (2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 (如果 y x 2 r s2 1+ s22 2 , 则认为新设 备生产产品的该项指标的均值较旧设备有显著提高, 否则不认为有显著提高). 解:(1) 各项所求值如下所示. x = 1 10(9.8 + 10.3 + 10.0 + 10.2 + 9.9 + 9.8 + 10.0 + 10.1 + 10.2 + 9.7) = 10.0, y = 1 10(10.1 + 10.4 + 10.1 +

24、10.0 + 10.1 + 10.3 + 10.6 + 10.5 + 10.4 + 10.5) = 10.3, s2 1= 1 10 ?(9.7 10.0)2 + 2 (9.8 10.0)2+ (9.9 10.0)2+ 2 (10.0 10.0)2+ (10.1 10.0)2+ 2 (10.2 10.0)2+ (10.3 10.0)2?= 0.036, s2 2= 1 10 ?(10.0 10.3)2 + 3 (10.1 10.3)2+ (10.3 10.3)2+ 2 (10.4 10.3)2+ 2 (10.5 10.3)2+ (10.6 10.3)2?= 0.04. 2021 年高考数学全国

25、乙卷理科真题解析10 (2) 由 (1) 中数据得 y x = 0.3,2 r s2 1+ s22 10 = 20.0076 2 r s2 1+ s22 10 . 所以认为新设备生产产品的该项指标的均值较旧设备有显著提高. 18. (12 分) 如图,四棱锥PABCD的底面是矩形,PD 底面ABCD,PD = DC = 1,M 为BC 的中点,且PB AM. (1) 求 BC (2) 求二面角 A PM B 的正弦值. P AB M C D P AB M C D x y z 题 图解析图 解:(1) 因为 PD 平面 ABCD, 且矩形 ABCD 中, AD DC. 所以以 DA, DC, D

26、P 分别为 x,y,z 轴正方 向, D 为原点建立空间直角坐标系 D xyz. 设 BC = t, A(t,0,0),B(t,1,0),M( t 2,1,0),P(0,0,1), 所以 PB = (t,1,1), AM = ( t 2,1,0). 因为 PB AM, 所以 PB AM = t 2 2 + 1 = 0, 所以 t = 2, 所以 BC =2. (2) 设平面 APM 的一个法向量为 m = (x,y,z). 由于 AP = (2,0,1), 则 m AP = 2x + z = 0, m AM = 2 2 x + y = 0. 令 x = 2, 得 m = (2,1,2). 设平

27、面 PMB 的一个法向量为 n = (x,y,z), 则 n CB = 2x = 0, n PB = 2x + y z= 0. 令 y= 1, 得 n = (0,1,1). 所以 cosm,n = m n |m|n| = 3 7 2= 314 14 . 所以二面角 A PM B 的正弦值为 70 14 . 19. (12 分) 记 Sn为数列 an 的前 n 项和, bn为数列 Sn 的前 n 项积, 已知 2 Sn + 1 bn = 2. (1) 证明: 数列 bn 是等差数列 (2) 求 an 的通项公式. 11微信公众号:数学竞赛的那些事儿 解:(1) 由已知 2 Sn + 1 bn =

28、 2, 则 bn bn1 = Sn(n 2). 2bn1 bn + 1 bn = 2 2bn1+ 1 = 2bn bn bn1= 1 2 (n 2),b1= 3 2. 故 bn 是以 3 2 为首项, 1 2 为公差的等差数列. (2) 由 (1) 知 bn= 3 2 + (n 1)1 2 = n + 2 2 , 则 2 Sn + 2 n + 2 = 2 Sn= n + 2 n + 1. n = 1 时, a1= S1= 3 2. n 2 时, an= Sn Sn1= n + 2 n + 1 n + 1 n = 1 n(n + 1). 故 an= 3 2, n = 1, 1 n(n + 1),

29、 n 2. 20. (12 分) 设函数 f(x) = ln(a x), 已知 x = 0 是函数 y = xf(x) 的极值点. (1) 求 a (2) 设函数 g(x) = x + f(x) xf(x) , 证明: g(x) 1. 解:(1) xf(x)= xf(x) + xf(x). 当 x = 0 时, xf(x)= f(0) = lna = 0, 所以 a = 1. (2) 由 f(x) = ln(1 x), 得 x 1. 当 0 x 1 时, f(x) = ln(1 x) 0, xf(x) 0 当 x 0, xf(x) xf(x), x + ln(1 x) xln(1 x) 0.

30、令 1 x = t (t 0 且 t = 1), x = 1 t, 即证 1 t + lnt (1 t)lnt 0. 令 f(t) = 1 t + lnt (1 t)lnt, 则 f(t) = 1 + 1 t (1)lnt + 1 t t = 1 + 1 t + lnt 1 t t = lnt. 所以 f(t) 在 (0,1) 上单调递减, 在 (1,+) 上单调递增. 故 f(t) f(1) = 0, 得证. 21. (12 分) 已知抛物线 C : x2= 2py (p 0) 的焦点为 F, 且 F 与圆 M : x2+ (y + 4)2= 1 上点的距离的最小值为 4. (1) 求 p

31、(2) 若点 P 在 M 上, PA,PB 是 C 的两条切线, A,B 是切点, 求 PAB 面积的最大值. 解:(1) 焦点 F(0, p 2) 到 x 2 + (y + 4)2= 1 的最短距离为 p 2 + 3 = 4, 所以 p = 2. (2) 抛物线 y = 1 4x 2. 设 A(x1,y1),B(x2,y2),P(x0,y0), 则 lPA: y = 1 2x1(x x1) + y1 = 1 2x1x 1 4x 2 1= 1 2x1x y1, lPB: y = 1 2x2x y2,且 x 2 0= y 2 0 8y0 15. 2021 年高考数学全国乙卷理科真题解析12 lP

32、A,lPB都过点 P(x0,y0), 则 y0= 1 2x1x0 y1, y0= 1 2x2x0 y2. 故 lAB: y0= 1 2x0 x y, 即 y = 1 2x0 x y0. 联立 y = 1 2x0 x y0, x2= 4y , 得 x2 2x0 x + 4y0= 0, = 4x2 0 16y0. 所以 |AB| = r 1 + x2 0 4 p4x2 0 16y0= p4 + x2 0 px2 0 4y0, dPAB = |x2 0 4y0| px2 0+ 4 . 所以 SPAB= 1 2|AB| dPAB = 1 2|x 2 0 4y0| q x2 0 4y0= 1 2(x 2

33、 0 4y0) 3 2= 1 2(y 2 0 12y0 15) 3 2. 而 y0 5,3. 故当 y0= 5 时, SPAB达到最大, 最大值为 205. (二) 选考题: 共 10 分. 请考生在第 22、23 题中任选一题作答, 如果多做, 则按所做的第一题计分. 22. 【选修 4 4: 坐标系与参数方程】(10 分) 在直角坐标系 xOy 中, C 的圆心为 C(2,1), 半径为 1. (1) 写出 C 的一个参数方程 (2) 过点 F(4,1) 作 C 的两条切线. 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求这两条切线的极 坐标方程. 解:(1) 因为 C 的圆心为

34、 (2,1), 半径为 1. 故 C 的参数方程为 x = 2 + cos y = 1 + sin ( 为参数). (2) 设切线 y = k(x 4) + 1, 即 kx y 4k + 1 = 0. 故 |2k 1 4k + 1| 1 + k2= 1, 即 |2k| = 1 + k2, 4k2 = 1 + k2, 解得 k = 3 3 . 故直线方程为 y = 3 3 (x 4) + 1, y = 3 3 (x 4) + 1. 故两条切线的极坐标方程为 sin = 3 3 cos 4 3 3 + 1 或 sin = 3 3 cos + 4 3 3 + 1. 23. 【选修 4 5: 不等式选

35、讲】(10 分) 已知函数 f(x) = |x a| + |x + 3|. (1) 当 a = 1 时, 求不等式 f(x) 6 的解集 (2) 若 f(x) a, 求 a 的取值范围. 解:(1) a = 1 时, f(x) = |x 1| + |x + 3|, 即求 |x 1| + |x + 3| 6 的解集. 当 x 1 时, 2x + 2 6, 得 x 2 当 3 x a, 而由绝对值的几何意义, 即求 x 到 a 和 3 距离的最小值. 当 x 在 a 和 3 之间时最小, 此时 f(x) 最小值为 |a + 3|, 即 |a + 3| a. a 3 时, 2a + 3 0, 得 a

36、 3 2 a a, 此时 a 不存在. 综上, a 3 2. 2021 年普通高等学校招生全国统一考试 文科数学乙卷 注意事项: 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上. 2. 回答选择题时, 选出每小题答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑如需改动, 用橡皮擦 干净后, 再选涂其它答案标号回答非选择题时, 将答案写在答题卡上. 写在本试卷上无效. 3. 考试结束后, 将本试卷和答题卡一并交回 一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分, 在每小题给出的四个选项中, 只有一项符合题目要求. 1. 已知全集 U = 1,2,3,4,

37、5, 集合 M = 1,2,N = 3,4, 则 U(M N) =( ). A: 5B: 1,2C: 3,4D: 1,2,3,4 2. 设 iz = 4 + 3i, 则 z =( ). A: 3 4iB: 3 + 4iC: 3 4iD: 3 + 4i 3. 已知命题 p : x R,sinx 1 命题 q : x R,e|x| 1, 则下列命题中为真命题的是 ( ). A: p qB: p qC: p qD: (p q) 4. 函数 f(x) = sin x 3 + cos x 3 的最小正周期和最大值分别是 ( ). A: 3 和 2 B: 3 和 2C: 6 和 2 D: 6 和 2 5.

38、 若 x,y 满足约束条件 x + y 4, x y 2, y 3, 则 z = 3x + y 的最小值为 ( ). A: 18B: 10C: 6D: 4 6. cos2 12 cos2 5 12 =( ). A: 1 2 B: 3 3 C: 2 2 D: 3 2 7. 在区间 (0, 1 2) 随机取 1 个数, 则取到的数小于 1 3 的概率为 ( ). A: 3 4 B: 2 3 C: 1 3 D: 1 6 8. 下列函数中最小值为 4 的是 ( ). A: y = x2+ 2x + 4B: y = |sinx| + 4 |sinx| C: y = 2x+ 22xD: y = lnx +

39、 4 lnx 9. 设函数 f(x) = 1 x 1 + x, 则下列函数中为奇函数的是 ( ). A: f(x 1) 1B: f(x 1) + 1C: f(x + 1) 1D: f(x + 1) + 1 10. 在正方体 ABCD A1B1C1D1中, P 为 B1D1的中点, 则直线 PB 与 AD1所成的角为 ( ). A: 2 B: 3 C: 4 D: 6 2021 年高考数学全国乙卷文科真题14 11. 设 B 是椭圆 C : x2 5 + y2= 1 的上顶点, 点 P 在 C 上, 则 |PB| 的最大值为 ( ). A: 5 2 B: 6 C: 5 D: 2 12. 设 a =

40、 0, 若 x = a 为函数 f(x) = a(x a)2(x b) 的极大值点, 则 ( ). A: a bC: ab a2 二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分. 13. 已知向量 a = (2,5),b = (,4), 若 a / b, 则 =. 14. 双曲线 x2 4 y2 5 = 1 的右焦点到直线 x + 2y 8 = 0 的距离为. 15. 记 ABC 的内角 A,B,C 的对边分别为 a,b,c, 面积为 3,B = 60,a2 + c2= 3ac, 则 b =. 16. 以图 为正视图, 在图 中选两个分别作为侧视图和俯视图, 组成某个三棱锥的

41、三视图, 则所 选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可). 2 1 22 11 2 22 2 图 1 图 2图 3 图 4 图 5 (第 16 题图) 三、解答题: 共 70 分. 解答应写出文字说明、证明过程或演算步骤. 第 1721 题为必考题, 每个试题考生都 必须作答 第 22、23 题为选考题, 考生根据要求作答. (一) 必考题: 共 5 小题, 每小题 12 分, 共 60 分. 17. (12 分) 某厂研制了一种生产高精产品的设备, 为检验新设备生产产品的某项指标有无提高, 用一台旧设备和一台新 设备各生产了 10 件产品, 得到各件产品该项指标数据如下:

42、旧设备9.810.310.010.29.99.810.010.110.29.7 新设备10.110.410.110.010.110.310.610.510.410.5 旧设备和新设备生产产品的该项指标的样本平均数分别记为 x 和 y, 样本方差分别记为 s2 1和 s22. (1) 求 x,y,s2 1,s22 (2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 (如果 y x 2 r s2 1+ s22 2 , 则认为新设 备生产产品的该项指标的均值较旧设备有显著提高, 否则不认为有显著提高). 15微信公众号:数学竞赛的那些事儿 18. (12 分) 如图, 四棱锥 P AB

43、CD 的底面是矩形, PD 底面 ABCD, M 为 BC 的中点, 且 PB AM. (1) 证明: 平面 PAM 平面 PBD (2) 若 PD = DC = 1, 求四棱锥 P ABCD 的体积. P AB M C D (第 18 题图) 19. (12 分) 设 an 是首项为 1 的等比数列, 数列 bn 满足 bn= nan 3 . 已知 a1,3a2,9a3成等差数列. (1) 求 an 和 bn 的通项公式 (2) 记 Sn和 Tn分别为 an 和 bn 的前 n 项和. 证明: Tn 0) 的焦点 F 到准线的距离为 2. (1) 求 C 的方程 (2) 已知 O 为坐标原点

44、, 点 P 在 C 上, 点 Q 满足 PQ = 9 QF, 求直线 OQ 斜率的最大值. 2021 年高考数学全国乙卷文科真题16 21. (12 分) 已知函数 f(x) = x3 x2+ ax + 1. (1) 讨论 f(x) 的单调性 (2) 求曲线 y = f(x) 过坐标原点的切线与曲线 y = f(x) 的公共点的坐标. (二) 选考题: 共 10 分. 请考生在第 22、23 题中任选一题作答, 如果多做, 则按所做的第一题计分. 22. 【选修 4 4: 坐标系与参数方程】(10 分) 在直角坐标系 xOy 中, C 的圆心为 C(2,1), 半径为 1. (1) 写出 C

45、的一个参数方程 (2) 过点 F(4,1) 作 C 的两条切线. 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求这两条切线的极 坐标方程. 23. 【选修 4 5: 不等式选讲】(10 分) 已知函数 f(x) = |x a| + |x + 3|. (1) 当 a = 1 时, 求不等式 f(x) 6 的解集 (2) 若 f(x) a, 求 a 的取值范围. 2021 年普通高等学校招生全国统一考试 文科数学乙卷 (参考答案) 注意事项: 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上. 2. 回答选择题时, 选出每小题答案后, 用 2B 铅笔把答题卡上对应题目的答案标

46、号涂黑如需改动, 用橡皮擦 干净后, 再选涂其它答案标号回答非选择题时, 将答案写在答题卡上. 写在本试卷上无效. 3. 考试结束后, 将本试卷和答题卡一并交回 一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分, 在每小题给出的四个选项中, 只有一项符合题目要求. 1. 已知全集 U = 1,2,3,4,5, 集合 M = 1,2,N = 3,4, 则 U(M N) =( ). A: 5B: 1,2C: 3,4D: 1,2,3,4 答案:A. 解析:由 M = 1,2,N = 3,4, 所以 M N = 1,2,3,4, 所以 U(M N) = 5. 2. 设 iz = 4

47、+ 3i, 则 z =( ). A: 3 4iB: 3 + 4iC: 3 4iD: 3 + 4i 答案:C. 解析:在等式 iz = 4 + 3i 两边同时乘 i 得 z = 4i 3, 所以 z = 3 4i. 3. 已知命题 p : x R,sinx 1 命题 q : x R,e|x| 1, 则下列命题中为真命题的是 ( ). A: p qB: p qC: p qD: (p q) 答案:A. 解析:由已知可得命题 p 为真命题, 命题 q 为真命题, 所以 p q 为真命题, 故选 A. 4. 函数 f(x) = sin x 3 + cos x 3 的最小正周期和最大值分别是 ( ). A

48、: 3 和 2 B: 3 和 2C: 6 和 2 D: 6 和 2 答案:C. 解析:由 f(x) = sin x 3 + cos x 3 可得 f(x) = 2sin(x 3 + 4 ), 故周期为 T = 2 = 2 1 3 = 6, 最大值为 2. y x B(1,3) A C O 1 2 3 4 12345 1 2 5. 若 x,y 满足约束条件 x + y 4, x y 2, y 3, 则 z = 3x + y 的最小值为 ( ). A: 18B: 10 C: 6D: 4 答案:C. 解析:由约束条件可得可行域如图所示, 当直线 z = 3x + y 过点 B(1,3) 时, z 取

49、最小值为 6, 故选 C. 2021 年高考数学全国乙卷文科真题解析18 6. cos2 12 cos2 5 12 =( ). A: 1 2 B: 3 3 C: 2 2 D: 3 2 答案:D. 解析:计算可得 cos2 12 cos2 5 12 = cos2 12 sin2 12 = cos 6 = 3 2 . 7. 在区间 (0, 1 2) 随机取 1 个数, 则取到的数小于 1 3 的概率为 ( ). A: 3 4 B: 2 3 C: 1 3 D: 1 6 答案:B. 解析:由题意可知, 本题是几何概型, 测度为长度 P(A) = 1 3 0 1 2 0 = 2 3. 8. 下列函数中最

50、小值为 4 的是 ( ). A: y = x2+ 2x + 4B: y = |sinx| + 4 |sinx| C: y = 2x+ 22xD: y = lnx + 4 lnx 答案:C. 解析:由题意可知 A 的最小值为 3, B 的等号成立条件不成立, D 无最小值, 故选 C. 9. 设函数 f(x) = 1 x 1 + x, 则下列函数中为奇函数的是 ( ). A: f(x 1) 1B: f(x 1) + 1C: f(x + 1) 1D: f(x + 1) + 1 答案:B. 解析:f(x) = 1 + 2 x + 1 关于 (1,1) 中心对称. 向右 1 个单位, 向上 1 个单位

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|