ImageVerifierCode 换一换
格式:PPT , 页数:40 ,大小:755KB ,
文档编号:1677972      下载积分:9.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1677972.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(金钥匙文档)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(投资学:Chap018.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

投资学:Chap018.ppt

1、INVESTMENTS | BODIE, KANE, MARCUS Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin CHAPTER 18 Option Valuation INVESTMENTS | BODIE, KANE, MARCUS Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise pr

2、ice Put: exercise price - stock price Time value - the difference between the option price and the intrinsic value Option Values INVESTMENTS | BODIE, KANE, MARCUS Figure 18.1 Call Option Value before Expiration INVESTMENTS | BODIE, KANE, MARCUS Table 18.1 Determinants of Call Option Values INVESTMEN

3、TS | BODIE, KANE, MARCUS Restrictions on Option Value: Call Call value cannot be negative. The option payoff is zero at worst, and highly positive at best. Call value cannot exceed the stock value. Value of the call must be greater than the value of levered equity. Lower bound = adjusted intrinsic v

4、alue: C S0 - PV (X) - PV (D) (D=dividend) INVESTMENTS | BODIE, KANE, MARCUS Figure 18.2 Range of Possible Call Option Values INVESTMENTS | BODIE, KANE, MARCUS Figure 18.3 Call Option Value as a Function of the Current Stock Price INVESTMENTS | BODIE, KANE, MARCUS Early Exercise: Calls The right to e

5、xercise an American call early is valueless as long as the stock pays no dividends until the option expires. The value of American and European calls is therefore identical. The call gains value as the stock price rises. Since the price can rise infinitely, the call is “worth more alive than dead.”

6、INVESTMENTS | BODIE, KANE, MARCUS Early Exercise: Puts American puts are worth more than European puts, all else equal. The possibility of early exercise has value because: The value of the stock cannot fall below zero. Once the firm is bankrupt, it is optimal to exercise the American put immediatel

7、y because of the time value of money. INVESTMENTS | BODIE, KANE, MARCUS Figure 18.4 Put Option Values as a Function of the Current Stock Price INVESTMENTS | BODIE, KANE, MARCUS 100 120 90 Stock Price C 10 0 Call Option Value X = 110 Binomial Option Pricing: Text Example INVESTMENTS | BODIE, KANE, MA

8、RCUS Alternative Portfolio Buy 1 share of stock at $100 Borrow $81.82 (10% Rate) Net outlay $18.18 Payoff Value of Stock 90 120 Repay loan - 90 - 90 Net Payoff 0 30 18.18 30 0 Payoff Structure is exactly 3 times the Call Binomial Option Pricing: Text Example INVESTMENTS | BODIE, KANE, MARCUS 18.18 3

9、0 0 3C 30 0 3C = $18.18 C = $6.06 Binomial Option Pricing: Text Example INVESTMENTS | BODIE, KANE, MARCUS Alternative Portfolio - one share of stock and 3 calls written (X = 110) Portfolio is perfectly hedged: Stock Value90120 Call Obligation0 -30 Net payoff90 90 Hence 100 - 3C = $81.82 or C = $6.06

10、 Replication of Payoffs and Option Values INVESTMENTS | BODIE, KANE, MARCUS Hedge Ratio In the example, the hedge ratio = 1 share to 3 calls or 1/3. Generally, the hedge ratio is: 00 esstock valu of range valuescall of range dSuS CC H du INVESTMENTS | BODIE, KANE, MARCUS Assume that we can break the

11、 year into three intervals. For each interval the stock could increase by 20% or decrease by 10%. Assume the stock is initially selling at $100. Expanding to Consider Three Intervals INVESTMENTS | BODIE, KANE, MARCUS S S + S + + S - S - - S + - S + + + S + + - S + - - S - - - Expanding to Consider T

12、hree Intervals INVESTMENTS | BODIE, KANE, MARCUS Possible Outcomes with Three Intervals EventProbabilityFinal Stock Price 3 up1/8100 (1.20)3 = $172.80 2 up 1 down3/8100 (1.20)2 (.90) = $129.60 1 up 2 down3/8100 (1.20) (.90)2 = $97.20 3 down1/8100 (.90)3 = $72.90 INVESTMENTS | BODIE, KANE, MARCUS Co

13、= SoN(d1) - Xe-rTN(d2) d1 = ln(So/X) + (r + 2/2)T / (T1/2) d2 = d1 - (T1/2) where Co = Current call option value So = Current stock price N(d) = probability that a random draw from a normal distribution will be less than d Black-Scholes Option Valuation INVESTMENTS | BODIE, KANE, MARCUS X = Exercise

14、 price e = 2.71828, the base of the natural log r = Risk-free interest rate (annualized, continuously compounded with the same maturity as the option) T = time to maturity of the option in years ln = Natural log function Standard deviation of the stock Black-Scholes Option Valuation INVESTMENTS | BO

15、DIE, KANE, MARCUS Figure 18.6 A Standard Normal Curve INVESTMENTS | BODIE, KANE, MARCUS So = 100X = 95 r = .10T = .25 (quarter) = .50 (50% per year) Thus: Example 18.1 Black-Scholes Valuation 18.25. 05 .43. 43. 25. 05 . 25. 0 2 5 10. 95 100 ln 2 2 1 d d INVESTMENTS | BODIE, KANE, MARCUS Using a tabl

16、e or the NORMDIST function in Excel, we find that N (.43) = .6664 and N (.18) = .5714. Therefore: Co = SoN(d1) - Xe-rTN(d2) Co = 100 X .6664 - 95 e- .10 X .25 X .5714 Co = $13.70 Probabilities from Normal Distribution INVESTMENTS | BODIE, KANE, MARCUS Implied Volatility Implied volatility is volatil

17、ity for the stock implied by the option price. Using Black-Scholes and the actual price of the option, solve for volatility. Is the implied volatility consistent with the stock? Call Option Value INVESTMENTS | BODIE, KANE, MARCUS Black-Scholes Model with Dividends The Black Scholes call option formu

18、la applies to stocks that do not pay dividends. What if dividends ARE paid? One approach is to replace the stock price with a dividend adjusted stock price Replace S0 with S0 - PV (Dividends) INVESTMENTS | BODIE, KANE, MARCUS Example 18.3 Black-Scholes Put Valuation P = Xe-rT 1-N(d2) - S0 1-N(d1) Us

19、ing Example 18.2 data: S = 100, r = .10, X = 95, = .5, T = .25 We compute: $95e-10 x.25(1-.5714)-$100(1-.6664) = $6.35 INVESTMENTS | BODIE, KANE, MARCUS P = C + PV (X) - So = C + Xe-rT - So Using the example data P = 13.70 + 95 e -.10 X .25 - 100 P = $6.35 Put Option Valuation: Using Put-Call Parity

20、 INVESTMENTS | BODIE, KANE, MARCUS Hedging: Hedge ratio or delta The number of stocks required to hedge against the price risk of holding one option Call = N (d1) Put = N (d1) - 1 Option Elasticity Percentage change in the options value given a 1% change in the value of the underlying stock Using th

21、e Black-Scholes Formula INVESTMENTS | BODIE, KANE, MARCUS Figure 18.9 Call Option Value and Hedge Ratio INVESTMENTS | BODIE, KANE, MARCUS Buying Puts - results in downside protection with unlimited upside potential Limitations Tracking errors if indexes are used for the puts Maturity of puts may be

22、too short Hedge ratios or deltas change as stock values change Portfolio Insurance INVESTMENTS | BODIE, KANE, MARCUS Figure 18.10 Profit on a Protective Put Strategy INVESTMENTS | BODIE, KANE, MARCUS Figure 18.11 Hedge Ratios Change as the Stock Price Fluctuates INVESTMENTS | BODIE, KANE, MARCUS Hed

23、ging On Mispriced Options Option value is positively related to volatility. If an investor believes that the volatility that is implied in an options price is too low, a profitable trade is possible. Profit must be hedged against a decline in the value of the stock. Performance depends on option pri

24、ce relative to the implied volatility. INVESTMENTS | BODIE, KANE, MARCUS Hedging and Delta The appropriate hedge will depend on the delta. Delta is the change in the value of the option relative to the change in the value of the stock, or the slope of the option pricing curve. Delta = Change in the

25、value of the option Change of the value of the stock INVESTMENTS | BODIE, KANE, MARCUS Example 18.6 Speculating on Mispriced Options Implied volatility = 33% Investors estimate of true volatility = 35% Option maturity = 60 days Put price P = $4.495 Exercise price and stock price = $90 Risk-free rate

26、 = 4% Delta = -.453 INVESTMENTS | BODIE, KANE, MARCUS Table 18.3 Profit on a Hedged Put Portfolio INVESTMENTS | BODIE, KANE, MARCUS Example 18.6 Conclusions As the stock price changes, so do the deltas used to calculate the hedge ratio. Gamma = sensitivity of the delta to the stock price. Gamma is s

27、imilar to bond convexity. The hedge ratio will change with market conditions. Rebalancing is necessary. INVESTMENTS | BODIE, KANE, MARCUS Delta Neutral When you establish a position in stocks and options that is hedged with respect to fluctuations in the price of the underlying asset, your portfolio

28、 is said to be delta neutral. The portfolio does not change value when the stock price fluctuates. INVESTMENTS | BODIE, KANE, MARCUS Table 18.4 Profits on Delta-Neutral Options Portfolio INVESTMENTS | BODIE, KANE, MARCUS Empirical Evidence on Option Pricing The Black-Scholes formula performs worst for options on stocks with high dividend payouts. The implied volatility of all options on a given stock with the same expiration date should be equal. Empirical test show that implied volatility actually falls as exercise price increases. This may be due to fears of a market crash.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|