ImageVerifierCode 换一换
格式:PPT , 页数:13 ,大小:246.50KB ,
文档编号:1694415      下载积分:4.99 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1694415.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川三人行教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(必修1数学新教材人教A版第一章 1.5.1 全称量词与存在量词.ppt)为本站会员(四川三人行教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

必修1数学新教材人教A版第一章 1.5.1 全称量词与存在量词.ppt

1、1.4.1全称量词与存在量词 P26 思考: 下列语句是命题吗?下列语句是命题吗?(1)与与(3),(2)与与(4)之间有什么关系?之间有什么关系? (1)x3; (2)2x+1是整数;是整数; (3)对所有的对所有的xR,x3; (4)对任意一个对任意一个xZ,2x+1是整数。是整数。 语句语句(1)(2)(1)(2)不能判断真假,不是命题;不能判断真假,不是命题; 语句语句(3)(4)(3)(4)可以判断真假,是命题。可以判断真假,是命题。 全称量词、全称命题定义:全称量词、全称命题定义: 短语短语“所有的所有的”“”“任意一个任意一个”在逻辑中通常叫做全称量词,并在逻辑中通常叫做全称量词

2、,并 用符号用符号“ ”“ ”表示。表示。 含有全称量词的命题,叫做全称量词命题。含有全称量词的命题,叫做全称量词命题。 常见的全称量词还有常见的全称量词还有 “一切一切” “每一个每一个” “任给任给” “所有的所有的”等等 。 全称量词命题举全称量词命题举 例:例: 全称量词命题符号记法:全称量词命题符号记法: :对任意的nZ,2n+1是奇数; 所有的正方形都是矩形。 通常,将含有变量通常,将含有变量x的语句用的语句用p(x), q(x), r(x),表示,变量表示,变量x 的取值范围用的取值范围用M表示,那么,表示,那么, ( ),xMp x , 全称命题全称命题“对对M中任意一个中任意

3、一个x,有,有p(x)成立成立 ”可用符号简记为:可用符号简记为: 读作读作“对任意对任意x属于属于M,有,有p(x)成立成立”。 解:解:(1)假命题;)假命题; 例例1 判断下列全称命题的真假:判断下列全称命题的真假: (1)所有的素数都是奇数;所有的素数都是奇数; (2) (3)对每一个无理数)对每一个无理数x,x2也是无理数。也是无理数。 2 ,1 1;xR x 小小 结:结: 判断全称命题xM,p(x)是真命题的方法: 判 断 全 称 命 题 xM,p(x)是 假 命 题 的 方 法 : 需要对集合需要对集合M中每个元素中每个元素x,证明,证明p(x)成立成立 只需在集合只需在集合M

4、中找到一个元素中找到一个元素x0,使得,使得p(x0)不成立即可不成立即可 (举反例)(举反例) (2)真命题;)真命题;(3)假命题。)假命题。 P28 P28 练习:练习: 1 判断下列全称命题的真假:判断下列全称命题的真假: (1)每个四边形的内角和都是)每个四边形的内角和都是360; (2)任何实数都有算术平方根)任何实数都有算术平方根; (3) 2 |xx xx 是无理数 , 是无理数。 P22 思考: 下列语句是命题吗?下列语句是命题吗?(1)与与(3),(2)与与(4)之间有什么关系?之间有什么关系? (1)2x+1=3; (2)x能被能被2和和3整除;整除; (3)存在一个存在

5、一个x0R,使,使2x+1=3; (4)至少有一个至少有一个x0Z,x能被能被2和和3整除。整除。 语句语句(1)(2)(1)(2)不能判断真假,不是命题;不能判断真假,不是命题; 语句语句(3)(4)(3)(4)可以判断真假,是命题。可以判断真假,是命题。 存在量词、存在量词命题定义:存在量词、存在量词命题定义: 短语短语“存在一个存在一个”“”“至少有一个至少有一个”在逻辑中通常叫做存在量在逻辑中通常叫做存在量 词,词, 并用符号并用符号“ ”“ ”表示。表示。 含有存在量词的命题,叫做存在量词命题。含有存在量词的命题,叫做存在量词命题。 常见的存在量词还有常见的存在量词还有 “有些有些”

6、“”“有一个有一个” “对某个对某个”“”“有的有的” 等等 。 存在量词命题举例:存在量词命题举例: 存在量词命题符号记法:存在量词命题符号记法: 命题:有的平行四边形是菱形;命题:有的平行四边形是菱形; 有一个素数不是奇数。有一个素数不是奇数。 通常,将含有变量通常,将含有变量x的语句用的语句用p(x), q(x), r(x),表示,变量表示,变量x 的取值范围用的取值范围用M表示,那么,表示,那么, 00 (),xMp x, 存在量词命题存在量词命题“存在存在M中的一个中的一个x0,使,使p(x0)成立成立 ”可用符号简记为:可用符号简记为: 读作读作“存在一个存在一个x0属于属于M,使

7、,使p(x0)成立成立”。 解:解:(1)假命题;)假命题; (2)假命题;)假命题; (3)真命题。)真命题。 例例2 判断下列存在量词命题的真假:判断下列存在量词命题的真假: (1)有一个实数)有一个实数x0,使,使x02+2x0+3=0; (2)平面内存在两条相交直线垂直于同一条直线;)平面内存在两条相交直线垂直于同一条直线; (3)有些平行四边形是菱形。)有些平行四边形是菱形。 小小 结:结: 00 判断特称命题 xM,p(x )是真命题的方法: 00 判断特称命题 xM,p(x )是假命题的方法: 需要证明集合需要证明集合M中,使中,使p(x)成立的元素成立的元素x不存在。不存在。

8、只需在集合只需在集合M中找到一个元素中找到一个元素x0,使得,使得p(x0) 成立即可成立即可 (举例证明)(举例证明) 存在 存在 练练 习:习: 2 判断下列存在量词命题的真假:判断下列存在量词命题的真假: (1) (2)至少有一个整数,它既不是合数,也不是素数;)至少有一个整数,它既不是合数,也不是素数; (3) 2 00 |xx xx是无理数 ,是无理数。 00 ,0;xR x 解:解:(1)真命题;)真命题; (2)真命题;)真命题; (3)真命题。)真命题。 练习练习 (1)存在这样的实数它的平方等于它本)存在这样的实数它的平方等于它本 身。身。 (2)任一个实数乘以)任一个实数乘

9、以-1都等于它的相反都等于它的相反 数;数; (3)存在实数)存在实数x,x3x2; 3、用符号、用符号“ ”与与“ ”表达下列命题:表达下列命题: 小结: 2 2、全称命题的符号记法。、全称命题的符号记法。 1、全称量词、全称命题的定义。、全称量词、全称命题的定义。 3、判断全称命题真假性的方法。、判断全称命题真假性的方法。 4、存在量词、特称命题的定义。、存在量词、特称命题的定义。 5、特称命题的符号记法。、特称命题的符号记法。 6、判断特称命题真假性的方法。、判断特称命题真假性的方法。 同一全称命题、特称命题,由于自然语言同一全称命题、特称命题,由于自然语言 的不同,可能有不同的表述方法

10、:的不同,可能有不同的表述方法: 命题命题 全称命题全称命题特称命题特称命题 所有的所有的xM,p(x)成立成立 对一切对一切xM,p(x)成立成立 对每一个对每一个xM,p(x)成成 立立 任选一个任选一个xM,p(x)成成 立立 凡凡xM,都有,都有p(x)成立成立 存在存在x0M,使,使p(x)成立成立 至少有一个至少有一个x0M,使,使 p(x)成立成立 对有些对有些x0M,使,使p(x)成成 立立 对某个对某个x0M,使,使p(x)成成 立立 有一个有一个x0M,使,使p(x)成成 立立 , ( )xM p x 0 , ( )xM p x 表述方法表述方法 l要判断一个存在量词命题为真,只要在给定的 集合中找到一个元素x,使命题p(x)为真;要判 断一个存在量词命题为假,必须对在给定集合 的每一个元素x,使命题p(x)为假。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|