ImageVerifierCode 换一换
格式:ZIP , 页数:0 ,大小:4.69MB ,
文档编号:1914864      下载积分:5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1914864.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(老黑)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(九 探索乐园-图形密铺的奥秘-ppt课件-(含教案)-市级公开课-冀教版五年级上册数学(编号:b0cf6).zip)为本站会员(老黑)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

九 探索乐园-图形密铺的奥秘-ppt课件-(含教案)-市级公开课-冀教版五年级上册数学(编号:b0cf6).zip

1、 用用一种一种 或或两种两种 以以上的上的 图图形,形, 将将一个一个 平面既平面既不不留空隙留空隙,也也不不重叠地重叠地铺满铺满,就就是是密铺密铺。不不留空隙留空隙不不重叠重叠自学课本自学课本97页上半部分,用自己的话说说什么是密铺?页上半部分,用自己的话说说什么是密铺?猜猜一一猜猜这这些图些图形形可以密铺吗可以密铺吗? 四人小组,每人选择一种图形拼一拼、摆四人小组,每人选择一种图形拼一拼、摆一摆,拼好后以小组为单位一起观察看哪一摆,拼好后以小组为单位一起观察看哪些图形能密铺,哪些图形不能密铺。些图形能密铺,哪些图形不能密铺。 通过拼摆我们组发现:通过拼摆我们组发现: 能能拼成拼成3 36

2、60 0度度,这种,这种 图图形形就能密就能密铺铺。一个多边形的几个内一个多边形的几个内角角任意三角形和任意四任意三角形和任意四边形边形都都可以密铺。可以密铺。1619年,数学 家奇柏(J. Kepler)第一个 利用正多边形 铺嵌平面。1891年,前苏联物理学 家费德洛夫(E. S. Fedorov)发现了十七种不同的铺嵌平面的对称图案。最富趣味的是 荷兰艺术家埃舍尔(M. C. Escher)与密铺。青蛙王子与白马王子 自己动手自己动手,设计一,设计一 幅幅密铺图密铺图案。案。第 1 页密密 铺铺教学设计教学设计 教材分析:教材分析:密铺是冀教版小学数学五年级上册探索乐园中的第二课时。本节

3、课是在学生已经认识多边形,能计算正多边形内角和度数的基础上学习的。教材设计了三个层面的内容:认识密铺-尝试用图形密铺-探索密铺的奥秘。学情分析学情分析:学生在学习本课之前,已经认识了长方形、正方形、三角形、平行四边形等平面图形,能够计算正多边形内角和度数,并知道了周角等于 360 度等基础知识。学生对平面图形的特征有了基本的了解,而且对于生活中的密铺已经积累了一定的感性认识。具备了在学习过程中动手拼摆、合作交流、共同探讨的知识储备和能力。但是对于理解密铺与图形内角度数的关系上可能会有一定困难。学习目标:学习目标:1.知识与技能目标:知道什么是密铺,了解能够密铺图形以及能够密铺的图形的特点。发展

4、合情推理能力和空间观念。第 2 页2.过程与方法目标:经历欣赏、尝试用简单图形密铺,以及探索图形密铺奥秘的过程,在观察、自学、操作、交流等活动中获取新知。3.情感态度价值观目标:感受数学与生活的联系,获得积极的体验。教学重点:教学重点:认识密铺,经历探索图形密铺奥秘的过程。教学难点:教学难点:了解能够密铺的图形的特点。教具准备:教具准备:多媒体课件,大小相等的正三角形、正五边形、正六边形、正八边形的纸片若干。教学过程:教学过程:一、创设情境,引入新知。创设情境,引入新知。1.欣赏图片导入。生活中你们见过这样的地面吗?这些花砖铺地时有什么特点?这种铺法在生活中很常见,它在数学上有一个名字密铺(板

5、书课题)2.质疑课题。看到这个课题你有什么疑问吗?预设:学生可能提出什么是密铺?什么图形可以密铺?.二、自主学习,认识密铺。自主学习,认识密铺。1.自学密铺概念。第 3 页学生汇报后小结:像这样“用一种或两种以上的图形,将一个平面既不留空隙,也不重叠地铺满,就是密铺。学生小声读,教师引导学生理解关键词(不留空隙,不重叠。)2.运用知识判断。师:下面的几种铺法是密铺吗?出示图(平行四边形、圆、重叠的扑克牌),学生判断并说明理由。3 3、合作学习,探究密铺奥秘合作学习,探究密铺奥秘(一)(一). .动手操作,尝试密铺。动手操作,尝试密铺。1.大胆猜想:知道了什么是图形的密铺,你能猜一猜我们学过的这

6、些平面图形哪些能够密铺,那些不能密铺吗?同学们猜一猜。2.操作验证:到底哪种图形能密铺呢?我们一起来动手拼一拼,摆一摆找寻答案吧。学生动手操作,教师课件演示。得出结论:通过拼摆我们组发现等边三角形、正六边形可以密铺。正五边形、正八边形不可以密铺。(二)小组合作,探究密铺奥秘。(二)小组合作,探究密铺奥秘。1.学生小组合作,探索密铺的奥秘。大家通过操作,知道了正三角形和正六边形能密铺,正五边形、正八边形不能密铺,那我们一起来观察这些能密铺第 4 页的图形和不能密铺的图形,看一看它们有什么奥秘呢?教师巡视指导。2.交流探索结果,引导学生得出密铺规律。学生汇报得出:拼在一起的几个角能拼成 360 度

7、,这种图形就能密铺。3.深入探究:提出“以前学过的哪些图形还能密铺?” 鼓励学生进一步探索。学生自由回答,教师课件演示动态密铺过程,从而得出结论:多边形的几个内角能拼成 360 度,这种图形就能密铺。(课件出示结论)4.你能提出哪些关于密铺的问题?预设疑问:不能单独密铺的图形能不能和其他图形组合密铺呢?“用什么图形和正五边形、正八边形配合就能密铺”?鼓励学生进一步探索。(学生观察后回答)4 4、欣赏密铺图案。欣赏密铺图案。荷兰著名画家埃舍尔就利用了密铺现象创作了许多世界名画,我们一起来欣赏一下。课件展示有关密铺的研究历史,并让学生欣赏密铺图案。5 5、创造密铺作品。创造密铺作品。第 5 页请你利用你们手中学具拼或画密铺图案,看看谁设计的最漂亮。学生创作密铺图案并展示。6 6、总结收获总结收获. .7 7、板书设计:板书设计: 密铺密铺 无空隙 不重叠 能密铺图形 不能密铺图形

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|