ImageVerifierCode 换一换
格式:ZIP , 页数:0 ,大小:10.93MB ,
文档编号:1941043      下载积分:5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1941043.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(小黑)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第一章 特殊平行四边形-1 菱形的性质与判定-菱形的判定-ppt课件-(含教案+视频+素材)-市级公开课-北师大版九年级上册数学(编号:30a6b).zip)为本站会员(小黑)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第一章 特殊平行四边形-1 菱形的性质与判定-菱形的判定-ppt课件-(含教案+视频+素材)-市级公开课-北师大版九年级上册数学(编号:30a6b).zip

1、1.1 菱形的性质与判定第一章 特殊平行四边形导入新课讲授新课当堂练习课堂小结第2课时 菱形的判定 九年级数学上(BS) 教学课件学习目标1.经历菱形判定定理的探究过程,掌握菱形的判 定定理(重点) 2.会用这些菱形的判定方法进行有关的证明和计算. (难点)一组邻边相等有一组邻边相等的平行四边形叫做菱形平行四边形菱形的性质菱形两组对边平行四条边相等两组对角分别相等 邻角互补两条对角线互相垂直平分每一条对角线平分一组对角边角对角线复习引入导入新课导入新课问题 菱形的定义是什么?性质有哪些?根据菱形的定义,可得菱形的第一个判定的方法:AB=AD,四边形ABCD是平行四边形,四边形ABCD是菱形.数

2、学语言有一组邻边相等的平行四边形叫做菱形.ABCD思考 还有其他的判定方法吗?讲授新课讲授新课对角线互相垂直的平行四边形是菱形一前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相垂直的平行四边形是菱形.你能证明这一猜想吗?ABCOD已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O ,ACBD.求证:ABCD是菱形.证明: 四边形ABCD是平行四边形. OA=OC. 又ACBD, BD是线段AC的垂直平分线. BA=BC. 四边

3、形ABCD是菱形(菱形的定义).证一证对角线互相垂直的平行四边形是菱形ACBD几何语言描述:在ABCD中,ACBD, ABCD是菱形.ABCD菱形ABCDABCDABCD菱形的判定定理:归纳总结例1 如图, ABCD的两条对角线AC、BD相交于点O,AB=5,AO=4,BO=3. 求证:四边形ABCD是菱形.ABCDO又四边形ABCD是平行四边形, OA=4,OB=3,AB=5,证明:即ACBD, AB2=OA2+OB2,AOB是直角三角形,典例精析四边形ABCD是菱形.例2 如图,ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形 ABCDEFO12证

4、明: 四边形ABCD是平行四边形, AEFC,1=2.EF垂直平分AC,AO = OC . 又AOE =COF,AOECOF,EO =FO.四边形AFCE是平行四边形.又EFAC 四边形AFCE是菱形.练一练在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是 ( ) AABC=90 BACBD CAB=CD DABCD B四条边相等的四边形是菱形二小刚:分别以A、C为圆心,以大于 AC的长为半径作弧,两条 弧分别相交于点B , D,依次连接A、B、C、D四点. 已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?

5、CABD想一想:根据小刚的作法你有什么猜想?你能验证小刚的作法对吗? 猜想:四条边相等的四边形是菱形.证明:AB=BC=CD=AD; AB=CD , BC=AD. 四边形ABCD是平行四边形.又AB=BC,四边形ABCD是菱形.ABCD已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证一证四条边都相等的四边形是菱形AB=BC=CD=AD几何语言描述:在四边形ABCD中,AB=BC=CD=AD,四边形 ABCD是菱形.ABCD菱形ABCD菱形的判定定理:归纳总结四边形ABCDABCD下列命题中正确的是 ( )A.一组邻边相等的四边形是菱形B.三条边相等的四边形是

6、菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形C练一练证明: 1= 2, 又AE=AC,AD=AD, ACD AED (SAS). 同理ACFAEF(SAS) . CD=ED, CF=EF. 又EF=ED,CD=ED=CF=EF, 四边形ABCD是菱形.2例3 如图,在ABC中, AD是角平分线,点E、F分别在 AB、 AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形. ACBEDF1典例精析例4 如图,在ABC中,B90,AB6cm,BC8cm.将ABC沿射线BC方向平移10cm,得到DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是

7、菱形证明:由平移变换的性质得CFAD10cm,DFAC.B90,AB6cm,BC8cm,ACDFADCF10cm,四边形ACFD是菱形 四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便归纳当堂练习当堂练习1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的 四边形是菱形;(4)两条邻边相等,且一条对角线平分一组 对角的四边形是菱形 2.一边长为5cm平行四边形的两条对角线的长分别为 24cm和26cm,那么平行四边形的面积是 . 312cm23.如图,将ABC沿BC

8、方向平移得到DCE,连接AD,下列条件能够判定四边形ACED为菱形的是() AAB=BC BAC=BC CB=60 DACB=60 B解析:将ABC沿BC方向平移得到DCE,ACDE,AC=DE,四边形ABED为平行四边形.当AC=BC时,平行四边形ACED是菱形故选B证明:MN是AC的垂直平分线,AE=CE,AD=CD,OA=OC,AOD=EOC=90.CEAB,DAO=ECO,ADOCEO(ASA)AD=CE,OD=OE,OD=OE,OA=OC,四边形ADCE是平行四边形又AOD=90,四边形ADCE是菱形 4.如图,ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CEAB交MN

9、于点E,连接AE、CD.求证:四边形ADCE是菱形.BCADOEM(1)证明:由尺规作BAF的平分线的过程可得AB=AF,BAE=FAE,四边形ABCD是平行四边形,ADBC,FAE=AEB,BAE=AEB,AB=BE,BE=FA,四边形ABEF为平行四边形,AB=AF,四边形ABEF为菱形;5.如图,在平行四边形ABCD中,用直尺和圆规作BAD的 平分线交BC于点E,连接EF(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长解:四边形ABEF为菱形,AEBF,BO= FB=3,AE=2AO,在RtAOB中,由勾股定理得AO =4,AE=2AO=8课堂小结课堂小结有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四边相等的四边形是菱形.运用定理进行计算和证明菱形的判定定义法判定定理

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|