1、课题:完全平方公式一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:(1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。(2)乘法公式是后续学习的必备
2、基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。(3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。(二)教学目标的确定在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段数学课程标准的要求,确定本节课的教学目标如下:1、知识目标:理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。2、能力目标:渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识
3、、应用意识、解决问题的能力和创新能力。3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。(三)教学重点与难点完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。二、教学方法与手段(一)教学方法:针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生
4、主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊一般特殊,将所学的知识用于实践中。采用小组讨论,大组竞赛等多种形式激发学习兴趣。(二)教学手段:利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。(三)学法指导:在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习
5、的主动性和积极性。三、教材处理根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。四、教学程序附:板书设计与时间大致安排本课时的时间大致安排:引入课题 3 分钟左右,探求新知 15 分钟左右,整理新知 2 分钟左右,应用新知15 分钟左右,公式拓展 5 分钟左右,小结作业布置约 5 分钟。设计说明本节课的教学设计注重体现以教师为主导、学生为主体,以发展学生为本的
6、思想。遵循初一学生的心理特点(形象思维大于抽象思维)和认知规律(从特殊到一般)。结合学生实际学习情况(已较熟练掌握多项式乘法,并且本节之前也已经学习了平方差公式)进行本课设计的。下面就设计作几点简单说明:1、完全平方公式的本质是多项式乘法,它的推导方法与平方差公式推导方法是一样的,根据乘方的意义与多项式乘法法则,就可以推导出完全平方公式。因此在两数和的平方公式推导中,采取先由学生自己计算(a+b)2,然后教师点题的方式,再加上引课时已经由几何图形面积的计算得出的结论(a+b)2=a2+2ab+b2,学生是容易接受的。在两数差的平方公式推导中,更进一步,由学生自主选择一种模式解决、验证,增加了数
7、学课堂的开放性。2、充分发挥学生自主学习、探究的能力。从引入时图形变换的教师启发引导,到公式验证、推导时的学生自主探索,再到学生与学生之间的合作交流学习,都突出了学生是探索性学习活动的主体。在公式拓展中还提出了思考题(a+b)3=?(a+b)4=?(a+b+c)2=?培养学生严谨的治学态度和钻研探索的精神。同时让学生明确本节课不仅要学会完全平方公式,更加要学会完全平方公式的推导方法,即授学生以渔,让学生学会学习。3、在练习设计与作业布置中都体现了分层次教学的要求,让不同层次的学生都能主动的参与并都能得到充分的发展。同时也遵循了面向全体与因材施教相结合的教学原则。4、充分挖掘本课时教材中的隐含的各种数学思想,在教学中渗透如建模思想、数形结合思想、换元思想、化归思想,注重培养学生的发现问题、解决问题的能力、求简意识、应用意识、创新能力等各方面能力。5、公式(a-b)2=a2-2ab+b2可以作为(a+b)2=a2+2ab+b2的一个应用,这样两个公式便统一为一个公式,这样做有助于学生的记忆和理解,但作为应用,实践表明还是把它们分开来用的好。因此,教学中在公式(a-b)2=a2-2ab+b2的推导过程就有意识的安排与(a+b)2=a2-2ab+b2统一,但又它与(a+b)2=a2+2ab+b2同等的对待。最后在小结时,对于两者的联系再加以说明,让学生领会到数学中的辩证统一思想。