1、第一章勾股定理 1、勾股定理 直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即 222 abc 2、勾股定理的逆定理 如果三角形的三边长 a,b,c 有关系, 222 abc,那么这个三角形是直角三角形。 勾股数:满足 222 abc的三个正整数,称为勾股数。 第二章 实数 一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如 3 2,7等; (2)有特定意义的数,
2、如圆周率 ,或化简后含有 的数,如 3 +8 等; (3)有特定结构的数,如 0.1010010001等; 二、二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是 零) ,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数, 则有 a+b=0,a=b,反之亦成立。 2、绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。 (|a|0) 。零的绝对值 是它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。 3、倒数 如果 a 与 b 互为倒数,则有 ab=1
3、,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒 数。 4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素 缺一不可) 。 5、估算 三、平方根、算数平方根和立方根 1、算术平方根:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 就 叫做 a 的算术平方根。特别地,0 的算术平方根是 0。 表示方法:记作“a” ,读作根号 a。 性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2、平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做 a 的 平方根(或二次方根) 。 表示方法:正数
4、a 的平方根记做“a” ,读作“正、负根号 a” 。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方:求一个数 a 的平方根的运算,叫做开平方。 a 注意a的双重非负性: a0 3、立方根 一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三 次方根) 。 表示方法:记作 3 a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所 表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。 2、实数大小比较的几种
5、常用方法 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设 a、b 是实数, ab0 则 ab ab0 则 ab (3)求商比较法:设 a、b 是两正实数,ab1 则 ab ab1 则 ab (4)绝对值比较法:设 a、b 是两负实数,则|a|b| 则 ab (5)平方法:设 a、b 是两负实数, 。a 2 b2 则 ab 五、算术平方根有关计算(二次根式) 1、含有二次根号“” ;被开方数 a 必须是非负数。 2、运算结果若含有“a”形式,必须满足: (1)被开方数的因数是整数,因式是整 式; (2)被开方数中不含能开得尽方的因数或因式 六、实数的运算 (1
6、)六种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序 先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 第三章 位置的确定 一、 在平面内,确定物体的位置一般需要两个数据。 二、平面直角坐标系及有关概念 1、平面直角坐标系 在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的 数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;x 轴和 y 轴统称坐标轴。它们的公共原点 O 称为直角坐标系的原点;建立了直角坐标系的平 面,叫做坐标平面。 2、为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而
7、成的四个部分,分 别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和 y 轴上的点(坐标轴上的点) ,不属于任何一个象限。 3、点的坐标的概念 对于平面内任意一点 P,过点 P 分别 x 轴、y 轴向作垂线,垂足在上 x 轴、y 轴对应的数 a,b 分别叫做点 P 的横坐标、纵坐标,有序数对(a,b)叫做点 P 的坐标。 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“, ”分开,横、 纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ba 时, (a,b)和(b,a) 是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。 4、不同位置的点的坐标的特征 (
8、1) 、各象限内点的坐标的特征 点 P(x,y)在第一象限 x o y o 点 P(x,y)在第二象限 x o 点 P(x,y)在第三象限 x o yo y0 时,图像经过第一、三象限,y 随 x 的增大而增大; (2)当 k0 时,y 随 x 的增大而增大 (2)当 k0 时,y 随 x 的增大而减小 6、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式 y=kx(k 不等于 0)中的常数 k。 确定一个一次函数,需要确定一次函数定义式 y=kx+b(k 不等于 0)中的常数 k 和 b。解这 类问题的一般方法是待定系数法。 7、一次函数与一元一次方程的关系:
9、 任何一个一元一次方程都可转化为:kx+b=0(k、b 为常数,k0)的形式 而一 次函数解析式形式正是 y=kx+b(k、b 为常数,k0) 当函数值为 0 时,即 kx+b=0 就与 一元一次方程完全相同 第五章 二元一次方程组 1、二元一次方程 含有两个未知数,并且所含未知数的项的次数都是 1 的整式方程叫做二元一次方程。 2、二元一次方程的解 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 3、二元一次方程组 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。 4 二元一次方程组的解 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
10、5、二元一次方程组的解法 (1)代入(消元)法(2)加减(消元)法 6、一次函数与二元一次方程(组)的关系: 一次函数与二元一次方程的关系: 直线 y=kx+b 上任意一点的坐标都是它所对应的二元一次方程 kx- y+b=0 的解 当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无 交点时,说明相应的二元一次方程组无解。 第六章 数据的代表 1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数 2、平均数 (1)平均数:一般地,对于 n 个数, 21n xxx我们把 1/n(x1x2+xn) (2)叫做这 n 个数的算术平均数,简称平均数,记为x。 (2)加权平均数: 3、众数 一组数据中出现次数最多的那个数据叫做这组数据的众数。 4、中位数 一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数 据的平均数)叫做这组数据的中位数。
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。