ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:283KB ,
文档编号:2036958      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2036958.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(一个凡人)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(考点27:正方形.doc)为本站会员(一个凡人)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

考点27:正方形.doc

1、20182018 中考数学试题分类汇编:考点中考数学试题分类汇编:考点 2727 正方形正方形一选择题(共一选择题(共 4 小题)小题)1(2018无锡)如图,已知点 E 是矩形 ABCD 的对角线 AC 上的一动点,正方形 EFGH 的顶点 G、H 都在边 AD 上,若 AB=3,BC=4,则 tanAFE 的值()A等于B等于C等于D随点 E 位置的变化而变化【分析】根据题意推知 EFAD,由该平行线的性质推知AEHACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答【解答】解:EFAD,AFE=FAG,AEHACD,=设 EH=3x,AH=4x,HG=GF=3x,tanAFE=

2、tanFAG=故选:A2(2018宜昌)如图,正方形 ABCD 的边长为 1,点 E,F 分别是对角线 AC 上的两点,EGABEIAD,FHAB,FJAD,垂足分别为 G,I,H,J则图中阴影部分的面积等于 ()A1BCD【分析】根据轴对称图形的性质,解决问题即可;【解答】解:四边形 ABCD 是正方形,直线 AC 是正方形 ABCD 的对称轴,EGABEIAD,FHAB,FJAD,垂足分别为 G,I,H,J根据对称性可知:四边形 EFHG 的面积与四边形 EFJI 的面积相等,S阴=S正方形ABCD=,故选:B3(2018湘西州)下列说法中,正确个数有()对顶角相等;两直线平行,同旁内角相

3、等;对角线互相垂直的四边形为菱形;对角线互相垂直平分且相等的四边形为正方形A1 个B2 个C3 个 D4 个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案【解答】解:对顶角相等,故正确;两直线平行,同旁内角互补,故错误;对角线互相垂直且平分的四边形为菱形,故错误;对角线互相垂直平分且相等的四边形为正方形,故正确,故选:B4(2018张家界)下列说法中,正确的是()A两条直线被第三条直线所截,内错角相等B对角线相等的平行四边形是正方形C相等的角是对顶角D角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判

4、断即可【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D二填空题(共二填空题(共 7 小题)小题)5 (2018武汉)以正方形 ABCD 的边 AD 作等边ADE,则BEC 的度数是30或 150【分析】分等边ADE 在正方形的内部和外部两种情况分别求解可得【解答】解:如图 1,四边形 ABCD 为正方形,ADE 为等边三角形,AB=BC=CD=AD=AE=DE,B

5、AD=ABC=BCD=ADC=90,AED=ADE=DAE=60,BAE=CDE=150,又 AB=AE,DC=DE,AEB=CED=15,则BEC=AEDAEBCED=30如图 2,ADE 是等边三角形,AD=DE,四边形 ABCD 是正方形,AD=DC,DE=DC,CED=ECD,CDE=ADCADE=9060=30,CED=ECD=(18030)=75,BEC=36075260=150故答案为:30或 1506(2018呼和浩特)如图,已知正方形 ABCD,点 M 是边 BA 延长线上的动点(不与点 A 重合),且 AMAB,CBE 由DAM 平移得到若过点 E 作 EHAC,H 为垂足

6、,则有以下结论:点 M 位置变化,使得DHC=60时,2BE=DM;无论点 M 运动到何处,都有 DM=HM;无论点 M 运动到何处,CHM 一定大于 135其中正确结论的序号为【分析】先判定MEHDAH(SAS),即可得到DHM 是等腰直角三角形,进而得出 DM=HM;依据当DHC=60时,ADH=6045=15,即可得到 RtADM 中, DM=2AM, 即可得到 DM=2BE; 依据点 M 是边 BA 延长线上的动点 (不与点 A 重合),且 AMAB,可得AHMBAC=45,即可得出CHM135【解答】解:由题可得,AM=BE,AB=EM=AD,四边形 ABCD 是正方形,EHAC,E

7、M=AH,AHE=90,MEH=DAH=45=EAH,EH=AH,MEHDAH(SAS),MHE=DHA,MH=DH,MHD=AHE=90,DHM 是等腰直角三角形,DM=HM,故正确;当DHC=60时,ADH=6045=15,ADM=4515=30,RtADM 中,DM=2AM,即 DM=2BE,故正确;点 M 是边 BA 延长线上的动点(不与点 A 重合),且 AMAB,AHMBAC=45,CHM135,故正确;故答案为:7(2018青岛)如图,已知正方形 ABCD 的边长为 5,点 E、F 分别在 AD、DC上,AE=DF=2,BE 与 AF 相交于点 G,点 H 为 BF 的中点,连接

8、 GH,则 GH 的长为【分析】 根据正方形的四条边都相等可得 AB=AD, 每一个角都是直角可得BAE=D=90,然后利用“边角边”证明ABEDAF 得ABE=DAF,进一步得AGE=BGF=90,从而知 GH=BF,利用勾股定理求出 BF 的长即可得出答案【解答】解:四边形 ABCD 为正方形,BAE=D=90,AB=AD,在ABE 和DAF 中,ABEDAF(SAS),ABE=DAF,ABE+BEA=90,DAF+BEA=90,AGE=BGF=90,点 H 为 BF 的中点,GH=BF,BC=5、CF=CDDF=52=3,BF=,GH=BF=,故答案为:8 (2018咸宁)如图,将正方形

9、 OEFG 放在平面直角坐标系中,O 是坐标原点,点 E 的坐标为(2,3),则点 F 的坐标为(1,5)【分析】结合全等三角形的性质可以求得点 G 的坐标,再由正方形的中心对称的性质求得点 F 的坐标【解答】解:如图,过点 E 作 x 轴的垂线 EH,垂足为 H过点 G 作 x 轴的垂线EG,垂足为 G,连接 GE、FO 交于点 O四边形 OEFG 是正方形,OG=EO,GOM=OEH,OGM=EOH,在OGM 与EOH 中,OGMEOH(ASA)GM=OH=2,OM=EH=3,G(3,2)O(,)点 F 与点 O 关于点 O对称,点 F 的坐标为 (1,5)故答案是:(1,5)9(2018

10、江西)在正方形 ABCD 中,AB=6,连接 AC,BD,P 是正方形边上或对角线上一点,若 PD=2AP,则 AP 的长为2 或 2或【 分 析 】 根 据 正 方 形 的 性 质 得 出 AC BD , AC=BD , OB=OA=OC=OD ,AB=BC=AD=CD=6,ABC=90,根据勾股定理求出 AC、BD、求出 OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可【解答】解:四边形 ABCD 是正方形,AB=6,ACBD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,ABC=DAB=90,在 RtABC 中,由勾股定理得:AC=6,OA=OB=OC=

11、OD=3,有三种情况:点 P 在 AD 上时,AD=6,PD=2AP,AP=2;点 P 在 AC 上时,设 AP=x,则 DP=2x,在 RtDPO 中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3x)2,解得:x=(负数舍去),即 AP=;点 P 在 AB 上时,设 AP=y,则 DP=2y,在 RtAPD 中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即 AP=2;故答案为:2 或 2或10(2018潍坊)如图,正方形 ABCD 的边长为 1,点 A 与原点重合,点 B 在 y轴的正半轴上,点 D 在 x 轴的负半轴上,将正

12、方形 ABCD 绕点 A 逆时针旋转 30至正方形 ABCD的位置, BC与 CD 相交于点 M, 则点 M 的坐标为 (1,) 【分析】连接 AM,由旋转性质知 AD=AB=1、BAB=30、BAD=60,证 RtADMRtABM 得DAM=BAD=30,由 DM=ADtanDAM 可得答案【解答】解:如图,连接 AM,将边长为 1 的正方形 ABCD 绕点 A 逆时针旋转 30得到正方形 ABCD,AD=AB=1,BAB=30,BAD=60,在 RtADM 和 RtABM 中,RtADMRtABM(HL),DAM=BAM=BAD=30,DM=ADtanDAM=1=,点 M 的坐标为(1,)

13、,故答案为:(1,)11(2018台州)如图,在正方形 ABCD 中,AB=3,点 E,F 分别在 CD,AD 上,CE=DF,BE,CF 相交于点 G若图中阴影部分的面积与正方形 ABCD 的面积之比为 2:3,则BCG 的周长为+3【分析】根据面积之比得出BGC 的面积等于正方形面积的,进而依据BCG的面积以及勾股定理,得出 BG+CG 的长,进而得出其周长【解答】解:阴影部分的面积与正方形 ABCD 的面积之比为 2:3,阴影部分的面积为9=6,空白部分的面积为 96=3,由 CE=DF,BC=CD,BCE=CDF=90,可得BCECDF,BCG 的面积与四边形 DEGF 的面积相等,均

14、为3=,设 BG=a,CG=b,则ab=,又a2+b2=32,a2+2ab+b2=9+6=15,即(a+b)2=15,a+b=,即 BG+CG=,BCG 的周长=+3,故答案为:+3三解答题(共三解答题(共 6 小题)小题)12(2018盐城)在正方形 ABCD 中,对角线 BD 所在的直线上有两点 E、F 满足 BE=DF,连接 AE、AF、CE、CF,如图所示(1)求证:ABEADF;(2)试判断四边形 AECF 的形状,并说明理由【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形 AECF 是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)正方形

15、ABCD,AB=AD,ABD=ADB,ABE=ADF,在ABE 与ADF 中,ABEADF(SAS);(2)连接 AC,四边形 AECF 是菱形理由:正方形 ABCD,OA=OC,OB=OD,ACEF,OB+BE=OD+DF,即 OE=OF,OA=OC,OE=OF,四边形 AECF 是平行四边形,ACEF,四边形 AECF 是菱形13 (2018吉林) 如图, 在正方形 ABCD 中, 点 E, F 分别在 BC, CD 上, 且 BE=CF,求证:ABEBCF【分析】根据正方形的性质,利用 SAS 即可证明;【解答】证明:四边形 ABCD 是正方形,AB=BC,ABE=BCF=90,在ABE

16、 和BCF 中,ABEBCF14(2018白银)已知矩形 ABCD 中,E 是 AD 边上的一个动点,点 F,G,H 分别是 BC,BE,CE 的中点(1)求证:BGFFHC;(2)设 AD=a,当四边形 EGFH 是正方形时,求矩形 ABCD 的面积【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可【解答】解:(1)点 F,G,H 分别是 BC,BE,CE 的中点,FHBE,FH=BE,FH=BG,CFH=CBG,BF=CF,BGFFHC,(2)当四边形 EGFH 是正方形时,可得:EFGH 且 EF=GH,在BEC 中,点,H 分别

17、是 BE,CE 的中点,GH=,且 GHBC,EFBC,ADBC,ABBC,AB=EF=GH=a,矩形 ABCD 的面积=15(2018潍坊)如图,点 M 是正方形 ABCD 边 CD 上一点,连接 AM,作 DEAM 于点 E,BFAM 于点 F,连接 BE(1)求证:AE=BF;(2)已知 AF=2,四边形 ABED 的面积为 24,求EBF 的正弦值【分析】(1)通过证明ABFDEA 得到 BF=AE;(2)设 AE=x,则 BF=x,DE=AF=2,利用四边形 ABED 的面积等于ABE 的面积与ADE 的面积之和得到xx+x2=24, 解方程求出 x 得到 AE=BF=6, 则 EF

18、=x2=4,然后利用勾股定理计算出 BE,最后利用正弦的定义求解【解答】(1)证明:四边形 ABCD 为正方形,BA=AD,BAD=90,DEAM 于点 E,BFAM 于点 F,AFB=90,DEA=90,ABF+BAF=90,EAD+BAF=90,ABF=EAD,在ABF 和DEA 中,ABFDEA(AAS),BF=AE;(2)解:设 AE=x,则 BF=x,DE=AF=2,四边形 ABED 的面积为 24,xx+x2=24,解得 x1=6,x2=8(舍去),EF=x2=4,在 RtBEF 中,BE=2,sinEBF=16(2018湘潭)如图,在正方形 ABCD 中,AF=BE,AE 与 D

19、F 相交于点 O(1)求证:DAFABE;(2)求AOD 的度数【分析】(1)利用正方形的性质得出 AD=AB,DAB=ABC=90,即可得出结论;(2)利用(1)的结论得出ADF=BAE,进而求出ADF+DAO=90,最后用三角形的内角和定理即可得出结论【解答】(1)证明:四边形 ABCD 是正方形,DAB=ABC=90,AD=AB,在DAF 和ABE 中,DAFABE(SAS),(2)由(1)知,DAFABE,ADF=BAE,ADF+DAO=BAE+DAO=DAB=90,AOD=180(ADF+DAO)=9017(2018遵义)如图,正方形 ABCD 的对角线交于点 O,点 E、F 分别在

20、 AB、BC 上(AEBE),且EOF=90,OE、DA 的延长线交于点 M,OF、AB 的延长线交于点 N,连接 MN(1)求证:OM=ON(2)若正方形 ABCD 的边长为 4,E 为 OM 的中点,求 MN 的长【分析】(1)证OAMOBN 即可得;(2)作 OHAD,由正方形的边长为 4 且 E 为 OM 的中点知 OH=HA=2、HM=4,再根据勾股定理得 OM=2,由直角三角形性质知 MN=OM【解答】解:(1)四边形 ABCD 是正方形,OA=OB,DAO=45,OBA=45,OAM=OBN=135,EOF=90,AOB=90,AOM=BON,OAMOBN(ASA),OM=ON;(2)如图,过点 O 作 OHAD 于点 H,正方形的边长为 4,OH=HA=2,E 为 OM 的中点,HM=4,则 OM=2,MN=OM=2

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|