ImageVerifierCode 换一换
格式:PPT , 页数:107 ,大小:1.35MB ,
文档编号:2046879      下载积分:14 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2046879.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(罗嗣辉)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(大地测量学基础课件:第四章 地球椭球数学变换(8-9节).ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

大地测量学基础课件:第四章 地球椭球数学变换(8-9节).ppt

1、1),(),(21BLFyBLFx4.8 地图数学投影变换的基本概念地图数学投影变换的基本概念 1、地图数学投影变换的意义和投影方程、地图数学投影变换的意义和投影方程 所谓地图数学投影,简略地说来就是将椭球面上元素所谓地图数学投影,简略地说来就是将椭球面上元素(包括坐标,方位和距离包括坐标,方位和距离)按一定的数学法则投影到平面按一定的数学法则投影到平面上,研究这个问题的专门学科叫地图投影学。上,研究这个问题的专门学科叫地图投影学。投影变换的基本概念投影变换的基本概念2 2 、地图投影的变形地图投影的变形1.长度比 : 长度比长度比m就是投影面上一段无限小的微分线段就是投影面上一段无限小的微分

2、线段ds,与椭球面上相应的微分线段与椭球面上相应的微分线段dS二者之比。二者之比。 不不同点上的长同点上的长度比不相同,而且同一点上不同方向的长度比也不相同度比不相同,而且同一点上不同方向的长度比也不相同 1212012p pPPmP Plim dsmdS 投影变换的基本概念投影变换的基本概念32.主方向和变形椭圆主方向和变形椭圆 投影后一点的长度比依方向不同而变化。其中最大及投影后一点的长度比依方向不同而变化。其中最大及最小长度比的方向,称为主方向。最小长度比的方向,称为主方向。 在椭球面的任意点上,必定有一对相互垂直的方向,它在椭球面的任意点上,必定有一对相互垂直的方向,它在平面上的投影也

3、必是相互垂直的。这两个方向就是长度比在平面上的投影也必是相互垂直的。这两个方向就是长度比的极值方向,也就是主方向。的极值方向,也就是主方向。 投影变换的基本概念投影变换的基本概念4 , a bxy122byax,12222byaxrrm1投影变换的基本概念投影变换的基本概念 以定点为中心,以长度比的数值为向径,构成以两个长以定点为中心,以长度比的数值为向径,构成以两个长度比的极值为长、短半轴的椭圆,称为变形椭圆。度比的极值为长、短半轴的椭圆,称为变形椭圆。5 3.投影变形 1 1)长度变形长度变形 2222sincosbarm1 mvbyax,投影变换的基本概念投影变换的基本概念62)方向变形

4、方向变形 tantanababxy) sin() sin(babababa)sin(sin00abba00tan,tan投影变换的基本概念投影变换的基本概念73)角度变形:角度变形: 角度变形就是投影前的角度角度变形就是投影前的角度u u 与投影后对应角度与投影后对应角度uu之差之差 211111801802u 211111801802u 112uuuaa() 2uababsin 22abuabarcsin 投影变换的基本概念投影变换的基本概念84)面积变形:面积变形:P-1P-14.8.3 4.8.3 地图投影的分类地图投影的分类1.1.按变形性质分类按变形性质分类1 1)等角投影:投影前后

5、的角度不变形,投影的长度比等角投影:投影前后的角度不变形,投影的长度比与方向无关,即某点的长度比是一个常数,又把等与方向无关,即某点的长度比是一个常数,又把等角投影称为正形投影。角投影称为正形投影。 2)等积投影:投影前后的面积不变形等积投影:投影前后的面积不变形. . 3)任意投影:既不等角,又不等积任意投影:既不等角,又不等积. . ababP投影变换的基本概念投影变换的基本概念92.按经纬网投影形状分类按经纬网投影形状分类 1)方位投影方位投影 取一平面与椭球极点相切,取一平面与椭球极点相切,将极点附近区域投影在该将极点附近区域投影在该平面上。纬线投影后为以平面上。纬线投影后为以极点为圆

6、心的同心圆,而极点为圆心的同心圆,而经线则为它的向径,且经经线则为它的向径,且经线交角不变。线交角不变。 Light SourcelBf),(投影变换的基本概念投影变换的基本概念10 2)圆锥投影圆锥投影: 取一圆锥面与椭球某条纬线相切,将纬取一圆锥面与椭球某条纬线相切,将纬圈附近的区域投影于圆锥面上,再将圆锥面沿某条经线剪圈附近的区域投影于圆锥面上,再将圆锥面沿某条经线剪开成平面。开成平面。 Standard LineTrue Length ExaggeratedlBf),(投影变换的基本概念投影变换的基本概念113)圆柱圆柱(或椭圆柱或椭圆柱)投影投影 取圆柱取圆柱(或椭圆柱或椭圆柱)与椭

7、球赤道相切,将赤道附近区域投与椭球赤道相切,将赤道附近区域投影到圆柱面影到圆柱面(或椭圆柱面或椭圆柱面)上,然后将圆柱或椭圆柱展开成上,然后将圆柱或椭圆柱展开成平面。平面。 Standard LineTrue Length Exaggerated投影变换的基本概念投影变换的基本概念123.3.按投影面和原面的相对位置关系分类按投影面和原面的相对位置关系分类1)1)正轴投影:圆锥轴正轴投影:圆锥轴( (圆柱轴圆柱轴) )与地球自与地球自转轴相重合的投影,称正轴圆锥投影转轴相重合的投影,称正轴圆锥投影或正轴圆柱投影。或正轴圆柱投影。2)2)斜轴投影:投影面与原面相切于除极斜轴投影:投影面与原面相切

8、于除极点和赤道以外的某一位置所得的投影。点和赤道以外的某一位置所得的投影。3)3)横轴投影:投影面的轴线与地球自转横轴投影:投影面的轴线与地球自转轴相垂直,且与某一条经线相切所得轴相垂直,且与某一条经线相切所得的投影。比如横轴椭圆柱投影等。的投影。比如横轴椭圆柱投影等。 除此之外,投影面还可以与地球椭球除此之外,投影面还可以与地球椭球相割于两条标准线,这就是所谓相割于两条标准线,这就是所谓割圆割圆锥锥,割圆柱割圆柱投影等。投影等。投影变换的基本概念投影变换的基本概念134.9 高斯平面直角坐标系高斯平面直角坐标系 1、 高斯投影概述高斯投影概述v 控制测量对地图投影的要求控制测量对地图投影的要

9、求 (1)采用等角投影)采用等角投影(又称为正形投影又称为正形投影) (2)长度和面积变形不大)长度和面积变形不大 (3)能按高精度的、简单的、同样的计算公式把各区)能按高精度的、简单的、同样的计算公式把各区域联成整体域联成整体 v 高斯投影描述高斯投影描述 高斯平面直角坐标系高斯平面直角坐标系14高斯平面直角坐标系高斯平面直角坐标系 想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,

10、将中央子午线两侧各一定经差范围球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面 。15投影带:投影带:以中央子午线为轴,两边对称划出一定区域作为投影以中央子午线为轴,两边对称划出一定区域作为投影范围;范围; 1)分带原则)分带原则 (1)限制长度变形使其不大于测图误差;)限制长度变形使其不大于测图误差; (2)带数不应过多以减少换带计算工作。)带数不应过多以减少换带计算工作。l 我国规定按经差我国规定按经差6和和3进行投影分带。进行投影分带。高斯平面直角坐标系高斯平面直角坐标系2

11、)分带方法)分带方法16高斯平面直角坐标系高斯平面直角坐标系(有余数时)的整数商16LN 6带带: 自自0子午线起每隔经差子午线起每隔经差6自西向东分带,依次编号自西向东分带,依次编号1,2,3,60。我国。我国6带中央子午线的经度,由带中央子午线的经度,由73起每隔起每隔6而至而至135,共计共计11带,带号用带,带号用n表示,中央子午线的经度用表示,中央子午线的经度用表示。表示。 带号及中央子午线经度的关系:带号及中央子午线经度的关系: 3带带: 自东经自东经1.5子午线起,每隔子午线起,每隔3设立一个投影带,设立一个投影带, 依次编依次编号为号为1,2,3, , 120带;中央子午线经度

12、依次为带;中央子午线经度依次为3, 6, 9, , 360。17 .5带或任意带带或任意带: 工程测量控制网也可采用工程测量控制网也可采用.5带或任意带,带或任意带,但为了测量成果的通用,需同国家但为了测量成果的通用,需同国家6或或3带相联系。带相联系。 n=L/3(四舍五入四舍五入)3高斯平面直角坐标系高斯平面直角坐标系带号及中央子午线经度的关系:带号及中央子午线经度的关系:18高斯平面直角坐标系高斯平面直角坐标系例:某控制点例:某控制点 P 点点按按3带:带:按按6带:带:84 .255130 ,21 .5023122 BL123413418 .4035 .12233中带LLn123321

13、636214 .2065 .1226NLN中带19高斯平面直角坐标系高斯平面直角坐标系 试分别计算北京与武汉两点在试分别计算北京与武汉两点在3带和带和6带其所属的带号及带其所属的带号及中央子午线经度。中央子午线经度。02116L02114L11739333978.383021163nLn中带北京:北京:武汉:武汉:北京:北京:3带带6带带1173206362089.1963021166NLN中带2011438333811.383021143nLn中带武汉武汉 :3带带 6带带1173206362056.1963021146NLN中带高斯平面直角坐标系高斯平面直角坐标系21高斯平面直角坐标系高斯

14、平面直角坐标系22 在投影面上,中央子午线和赤道的投影都是直线,并且在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道的交点以中央子午线和赤道的交点O作为坐标原点,以中央子午线的作为坐标原点,以中央子午线的投影为纵坐标轴,以赤道的投影为横坐标轴。投影为纵坐标轴,以赤道的投影为横坐标轴。 高斯平面直角坐标系高斯平面直角坐标系236带与带与3带的区别与联系区别带的区别与联系区别l 6带:从带:从 0子午线起划分,带宽子午线起划分,带宽6 ,用于中小比例尺(,用于中小比例尺(1:25000以下)测图;以下)测图;l 3带:从带:从 1.5子午线起划分,带宽子午线起划分,带宽3,用于大

15、比例尺(如,用于大比例尺(如1:10000)测图。)测图。l 3带是在带是在6带的基础上划分的,带的基础上划分的,6带的中央子午线及分带带的中央子午线及分带子午线均作为子午线均作为3带的中央子午线,其带的中央子午线,其奇数带奇数带的中央子午线与的中央子午线与6带带中央子午线中央子午线重合,重合,偶数带偶数带与与分带子午线分带子午线重合。重合。高斯平面直角坐标系高斯平面直角坐标系24高斯平面直角坐标系高斯平面直角坐标系l国家统一坐标国家统一坐标在我国在我国x坐标都是正的,坐标都是正的,y坐标的最大值坐标的最大值(在赤道上在赤道上)约为约为330km。为为了避免出现负的横坐标,规定在横坐标上加上了

16、避免出现负的横坐标,规定在横坐标上加上500 000m。此外还此外还应在坐标前面再冠以带号。这种坐标称为应在坐标前面再冠以带号。这种坐标称为国家统一坐标国家统一坐标。例如:例如: Y=19 123 456.789m该点位在该点位在19带内,横坐标的真值:首先去掉带号,再减去带内,横坐标的真值:首先去掉带号,再减去 500 000m,最后得最后得 y = -376 543.211(m)。 25高斯平面直角坐标系高斯平面直角坐标系分带存在的问题?分带存在的问题?边界子午线两侧的控制点与地形图位于不同的边界子午线两侧的控制点与地形图位于不同的投影带内,使得地形图不能正确拼接,采用带重叠的方法解决此投

17、影带内,使得地形图不能正确拼接,采用带重叠的方法解决此问题。问题。26 高斯投影的优点高斯投影的优点: : 1 1、投影带每一带坐标系统具有一致性、投影带每一带坐标系统具有一致性, ,对称性对称性; ; 2 2、计算公式可适用于任一带的计算、计算公式可适用于任一带的计算. . 高斯投影的缺点高斯投影的缺点: : 1. 1.出现带与带之间的不连续出现带与带之间的不连续, ,会带来地形图拼接的问题会带来地形图拼接的问题, ,所以应计所以应计 算两个带的坐标算两个带的坐标; ; 2. 2.靠近赤道变形越大靠近赤道变形越大, ,两极变形越小两极变形越小. .高斯平面直角坐标系高斯平面直角坐标系272、

18、椭球面元素化算到高斯投影面、椭球面元素化算到高斯投影面28 3) 将椭球面上各三角形内角归算到高斯平面上的由相应直线将椭球面上各三角形内角归算到高斯平面上的由相应直线组成的三角形内角。这是通过计算组成的三角形内角。这是通过计算方向的曲率改化方向的曲率改化即方向改化来即方向改化来实现的。实现的。椭球面三角系归算到高斯投影面的计算椭球面三角系归算到高斯投影面的计算 1)将起始点)将起始点P的大地坐标的大地坐标(L,B)归算为高斯平面直角坐标归算为高斯平面直角坐标 x,y;为了检核还应进行反算,亦即根据为了检核还应进行反算,亦即根据 x,y反算反算B,L,这项工这项工作统称为作统称为高斯投影坐标计算

19、高斯投影坐标计算。 2)将椭球面上起算边大地方位角归算到高斯平面上相应边)将椭球面上起算边大地方位角归算到高斯平面上相应边PK的坐标方位角,这是通过计算该点的的坐标方位角,这是通过计算该点的子午线收敛角子午线收敛角及及方向方向改化改化实现的。实现的。29 因此将椭球面三角系归算到平面上,包括坐标、曲率改化、距因此将椭球面三角系归算到平面上,包括坐标、曲率改化、距离改化和子午线收敛角等项计算工作。离改化和子午线收敛角等项计算工作。 5)当控制网跨越两个相邻投影带,以及为将各投影带联成)当控制网跨越两个相邻投影带,以及为将各投影带联成统一的整体,还需要进行平面坐标的统一的整体,还需要进行平面坐标的

20、邻带换算邻带换算。 4) 将椭球面上起算边将椭球面上起算边PK的的长度长度S归算归算到高斯平面上的直线到高斯平面上的直线长度长度s。这是通过计算距离改化这是通过计算距离改化实现的。实现的。30222)cos()(BdlNMdBdS22dSMdBNBdl()(cos)正形投影的一般条件正形投影的一般条件4.9.2 正形投影的一般条件正形投影的一般条件1、长度比的通用公式、长度比的通用公式222)()(dydxds3122222222222dsdxdymdSMdBNBdldxdy MdBNBdlNB()(cos)(cos)cos M d Bd qNBco s 0BM d BqNBc o s 222

21、2224334dxdym rdqdl()()() 正形投影的一般条件正形投影的一般条件32xxlqyylq(,) ,(,) xxdxdLdqLqyydydldqlq 2222xyEqqxxyyFqlqlxyGll 正形投影的一般条件正形投影的一般条件将上述两式代入(4-334)式,整理,令3322222224339E dqF dq dlG dlm rdqdl()()()()()()() 正形投影的一般条件正形投影的一般条件34231 390PPMdBdqAPPrdldltan() dlA dqtan 222222222222222222E dqFA dqGA dqm rdqA dqEFAGA

22、=rAEAFAAGA =r()tan()tan()()tan()tantanseccossincossin 正形投影的一般条件正形投影的一般条件2、柯西、柯西.黎曼条件黎曼条件350 xxyyqlql0F EG 2222xyxyqqllyyxqlxlq 正形投影的一般条件正形投影的一般条件正形条件正形条件 m m与与 A A 无关,即满足:无关,即满足:36222222yxyxylqqqqxq 22xyql xyqlxylq yyxqlxlq qlxylqxy 正形投影的一般条件正形投影的一般条件则有:则有:柯西柯西-黎曼条件黎曼条件3722222xyqqEm= rr 222224347xyG

23、llm= rr() 正形投影的一般条件正形投影的一般条件考虑到考虑到F=0,E=G,长度比公式简化为,长度比公式简化为38 把把 代入(代入(4-347),考虑下式),考虑下式xMyBNBlyMxBNBlcoscos M d Bd qNBc o s 222211xyxym MBBMllxyqlxylq 正形投影的一般条件正形投影的一般条件39 柯西柯西-黎曼条件的另一种解释方法黎曼条件的另一种解释方法xx l B yy l B( ,)( ,) xxdxdldBlB yydydLdBLB 正形投影的一般条件正形投影的一般条件40BBxABdxdBByBBdydBB CCxCCdxdllyACdy

24、dll 正形投影的一般条件正形投影的一般条件l如果点在子午线上:如果点在子午线上:L=常数,常数,dl=0l如果点在平行圈上:如果点在平行圈上:B=常数常数 dB=041ABACrABACBBCCrABACsincos ABACrBBCCtan ABmMdB ACmNBdlcos xMyBNBlyMxBNBlc o sc o s yxBlrxyBlta n 正形投影的一般条件正形投影的一般条件 三角形三角形ABB与与ACC相似相似42高斯投影坐标正算高斯投影坐标正算4.9.3 高斯投影坐标正反算公式高斯投影坐标正反算公式 高斯投影必须满足以下三个条件:高斯投影必须满足以下三个条件: (1)中央

25、子午线投影后为直线;中央子午线投影后为直线; (2)中央子午线投影后长度不变;中央子午线投影后长度不变; (3)投影具有正形性质,即正形投影条件。投影具有正形性质,即正形投影条件。高斯投影坐标正算公式推导如下:高斯投影坐标正算公式推导如下:1、高斯投影坐标正算公式、高斯投影坐标正算公式43yxxy lqlq 和2402435135xmm lm lym lm lm l 高斯投影坐标正算高斯投影坐标正算1) 由由第一个条件第一个条件可知,由于地球椭球体是一个旋转椭球体,即中央可知,由于地球椭球体是一个旋转椭球体,即中央子午线东西两侧的投影必然对称于中央子午线。子午线东西两侧的投影必然对称于中央子午

26、线。x 为为 l 的偶函数,的偶函数,而而 y 则为则为 l 的奇函数。的奇函数。2) 由由第三个条件第三个条件正形投影条件正形投影条件44由恒等式两边对应系数相等,建立求解待定系数的递推公式由恒等式两边对应系数相等,建立求解待定系数的递推公式dmdmdmmm lm llldqdqdqdmdmdmm lm lllldqdqdq2424024135335351243524 dmdmdmm m m = dqdqdq0121231123 高斯投影坐标正算高斯投影坐标正算45mX0 高斯投影坐标正算高斯投影坐标正算) 由第二条件由第二条件可知,位于中央子午线上的点,投影后的纵坐可知,位于中央子午线上的

27、点,投影后的纵坐标标 x 应该等于投影前从赤道量至该点的子午弧长。应该等于投影前从赤道量至该点的子午弧长。即当即当 l=0 时时,m0=? 46dmdX dBNcosBc= M=NcosB m = NcosB =cosB dqdB dqMV01NmsinBcosB 22 NmBtbNmBBt NmBtt322332245245cos(1)sincos(59)24cos(518)120 高斯投影坐标正算高斯投影坐标正算475NNxXsinBcosBl +sinBcos Btl +N sinBcos Bttl 23244246(5 -94)224(61 - 58)720 NyNB lcos Btl

28、 +N cos Btttl 32235242225cos(1)6(5181458)120 高斯投影坐标正算高斯投影坐标正算将各系数代入,略去高次项,精度为将各系数代入,略去高次项,精度为0.001m48),(),(21yxlyxB高斯投影坐标反算高斯投影坐标反算2、高斯投影坐标反算公式、高斯投影坐标反算公式 在高斯投影坐标反算时,原面是高斯平面,投影面是椭球面,在高斯投影坐标反算时,原面是高斯平面,投影面是椭球面,已知的是平面坐标已知的是平面坐标 (x, y),要求的是大地坐标要求的是大地坐标 (B,L),相应地有如相应地有如下投影方程:下投影方程:同正算一样,对投影函数提出三个条件。同正算一

29、样,对投影函数提出三个条件。4924024351354369Bnn yn yln yn yn y () BNBlxMyBNBlyMxc o sc o s 高斯投影坐标反算高斯投影坐标反算1) 由由第一个条件第一个条件可知可知2) 由由第三个条件,正形条件第三个条件,正形条件502424024133335351243524dndndnNByynn yn ydxdxdxMdndndnNBn yn yyyyMdxdxdxcos()cos() 011223123dnMnNBdxdnNBnMdxdnMnNBdxcoscoscos 11111kkkkdnMnrdx()()() 高斯投影坐标反算高斯投影坐标

30、反算51xX fBn 0fd Bd nd xd X0 ffdXMdB ffd Bd XM1 11ffffMnNBMcos 234nnn, 高斯投影坐标反算高斯投影坐标反算3) 由第二条件由第二条件依次求各系数依次求各系数因为因为所以所以52222224324652233224225525392461904572011265286248120ffffffffffffffffffffffffffftnMNtnttMNtntt MNntNBtntttNB()*()()cos()cos 高斯投影坐标反算高斯投影坐标反算532222232465539224619045720fffffffffffffff

31、fttBByttMNMNt ttyMN()() 223322422551112615286248120ffffffffffffflytyNBNB tttyNB()coscos()cos 高斯投影坐标反算高斯投影坐标反算542424xXm lm l = X+X() 高斯投影几何解释高斯投影几何解释3、高斯投影正反算公式的几何解释、高斯投影正反算公式的几何解释552424ffBBn yn y = BB() 高斯投影几何解释高斯投影几何解释56高斯投影的特点高斯投影的特点(1) 当当 l 等于常数时,随着等于常数时,随着B的增加的增加 x 值增大,值增大,y 值减小;无论值减小;无论 B 值为值为正

32、或负,正或负,y 值不变。这就是说,椭球面上除中央子午线外,其他子午值不变。这就是说,椭球面上除中央子午线外,其他子午线投影后,均向中央子午线弯曲,并向两极收敛,同时还对称于中央线投影后,均向中央子午线弯曲,并向两极收敛,同时还对称于中央子午线和赤道。子午线和赤道。 高斯投影的特点:高斯投影的特点:57高斯投影的特点高斯投影的特点(2) 当当 B 等于常数时,随着等于常数时,随着 l 的增加,的增加,x 值和值和 y 值都增大。所以值都增大。所以在椭球面上对称于赤道的纬圈,投影后仍成为对称的曲线,同时与子在椭球面上对称于赤道的纬圈,投影后仍成为对称的曲线,同时与子午线的投影曲线互相垂直凹向两极

33、。午线的投影曲线互相垂直凹向两极。(3) 距中央子午线愈远的子午线,投影后弯曲愈厉害,长度变形距中央子午线愈远的子午线,投影后弯曲愈厉害,长度变形也愈大。也愈大。584.9.4 高斯投影坐标计算算例高斯投影坐标计算算例1) WGS84 (6378137 , 298.257223563) 答案答案 A001: 2463376.6502 49592.07212) GDZ80 (6378140,298.257) 答案答案 A001: 2463377.7973 49592.09553) BJ54 (6378245,298.3) 答案答案 A001: 2463420.5657 49592.9084A00

34、1:0015387.5228111 ,98294.581522LB59平面子午线收敛角平面子午线收敛角4.9.5 平面子午线收敛角公式平面子午线收敛角公式 1、平面子午线收敛角的定义、平面子午线收敛角的定义602、公式推导公式推导 1)由大地坐标由大地坐标L、B计算平面子午线收敛角计算平面子午线收敛角的公式的公式 lylxBxBytan平面子午线收敛角平面子午线收敛角542534223)5861(120cossin )495(6cossincossinlttBBNltBBNBlBNlx44242222)185(24cos)1 (2cos1coslttBltBBNly61(1)(1)为为l l的

35、奇函数,而且的奇函数,而且l l愈大,愈大,也愈大;也愈大;(2)(2)有正负,当描写点在中央子午线以东时,有正负,当描写点在中央子午线以东时,为正;在西为正;在西时,时,为负;为负;(3)(3)当当l l不变时,则不变时,则随纬度增加而增大随纬度增加而增大)2(cossin151 )231(cossin31sin25542tBlBBlBlB平面子午线收敛角平面子午线收敛角32111xxxx例用级数展开式:例用级数展开式:62平面子午线收敛角平面子午线收敛角2.平面坐标平面坐标 x, y 计算平面子午线收敛角计算平面子午线收敛角的公式的公式)352(15)21 (3425542233fffff

36、ffffffttNyttNytNytBdlNMdBtgcosdyyldyyldxxldldyyBdyyBdxxBdB ylBNyBMtgcos535131tgtgtg63方向改化公式方向改化公式4.9.6 方向改化公式方向改化公式640360360abba 22abba 12abba 2pR 方向改化公式方向改化公式 在球面上四边形在球面上四边形ABED的内角之和等于的内角之和等于 360+,由于是等角投影,由于是等角投影,所以这两个四边形内角之和应该相等,即所以这两个四边形内角之和应该相等,即1、方向改化近似公式的推导、方向改化近似公式的推导65方向改化公式方向改化公式2)()(2babay

37、yxxRDEBEADP2mbabaabyxxR)(222bamyyy66方向改化较精密公式方向改化较精密公式 2121212222212326mmmmmyxxyyRRt yyyR()()() 2212121222221326mmmmmyxxyyRRt yyyR()()() 方向改化公式方向改化公式67方向改化公式方向改化公式cCcbBbaAa180cba180CBA)(cbaCBAcbacba180cba68DsS4.9.7 距离改化公式距离改化公式69vdsdDcossvdsD0cos221cosvvssdsvDs2)21 (2021) s与与D的关系的关系距离改化公式距离改化公式70当当取

38、最大取最大40,s=50km时,代入上式得。因此,用时,代入上式得。因此,用D代替代替s在最不利情况下,误差也不会超过在最不利情况下,误差也不会超过1mm。而实际上,边长要而实际上,边长要比比50km短得多,此时误差将会更小。所以在应用上,完全可短得多,此时误差将会更小。所以在应用上,完全可以认为大地线的平面投影曲线的长度以认为大地线的平面投影曲线的长度s等于其弦线长度等于其弦线长度D 距离改化公式距离改化公式71dSdsm 2、长度比和长度变形、长度比和长度变形1)用大地坐标)用大地坐标 (B , l) 表示的长度比表示的长度比m的公式的公式距离改化公式距离改化公式)()(cos1)()(2

39、2222222lylxBNrlylxm)45(cos241)1 (cos2112242222tBlBlm722)用平面坐标)用平面坐标 (x , y)表示的长度比表示的长度比m的公式的公式 cosBNyl )1 (211222NymMNRMN ,1222211Rym44222421RyRym距离改化公式距离改化公式近似公式:近似公式:精确公式:精确公式:73(1) 长度比长度比 m 只与点的位置只与点的位置 (B,l)或或 (x , y) 有关。有关。(2) 中央子午线投影后长度不变。中央子午线投影后长度不变。 (3) 当当 y0 (或或 l)时,时, m 恒大于恒大于1。 (4) 长度变形长

40、度变形 (m-1) 与与y(或或 l)成比例地增大成比例地增大 ,而对某一条子午而对某一条子午线来说,在赤道处有最大的变形线来说,在赤道处有最大的变形 。74将椭球面上大地线长度将椭球面上大地线长度S描写在高斯投影面上,变为平面长度描写在高斯投影面上,变为平面长度D。3、距离改化公式、距离改化公式2221mmRySDSRyDmm)21 (22SRyRyRyDmmmmm)242421 (442222适合三、四等网适合三、四等网适合一等网适合一等网距离改化公式距离改化公式SRyRyDmmm)2421 (2222适合二等网适合二等网75(1) 位于两个相邻带边缘地区并跨越两个投影带位于两个相邻带边缘

41、地区并跨越两个投影带(东、西带东、西带)的控制网的控制网 4.9.8 高斯投影的邻带坐标换算高斯投影的邻带坐标换算76邻带换算方法:邻带换算方法:采用高斯投影正反算。采用高斯投影正反算。 (2)在分界子午线附近地区测图时,往往需要用到另一带的三在分界子午线附近地区测图时,往往需要用到另一带的三角点作为控制,因此必须将这些点的坐标换算到同一带中角点作为控制,因此必须将这些点的坐标换算到同一带中 。 (3)当大比例尺当大比例尺(1 10 000或更大或更大)测图时,特别是在工程测量测图时,特别是在工程测量中,要求采用中,要求采用3带、带、1.5带或任意带,而国家控制点通常只有带或任意带,而国家控制

42、点通常只有6带坐标,这时就产生了带坐标,这时就产生了6带同带同3带带(或或1.5带、任意带带、任意带)之间之间的相互坐标换算问题。的相互坐标换算问题。77算例:算例:已知点已知点 x=2789505.2662, y=67803.3799 , L0=114o30 a=6378245, f =298.3求该点在中央子午线求该点在中央子午线 L0=115o30 的坐标的坐标? 参考答案:参考答案:B=25。123500 L=115。102200 x=2789375.815 y=32977.49178 最初在建立坐标系时,由于技术条件的限制,定向、定位精度有限,导致最终所定义的坐标系与国家坐标系在坐标

43、原点和坐标轴的指向上有所差异; 出于成果保密等原因,在按国家坐标系进行数据处理后,对所得的成果进行了一定的平移和旋转,得出独立坐标系; 为了减少投影变形,进行投影的中央子午线的变换; 为了满足工程的要求或工程施工方便而建立独立坐标系。 地方坐标系特点:地方坐标系特点:n平面坐标系,投影面根据工程需要定义;n坐标轴指向根据工程需要定义;n坐标轴原点根据工程需要定义。1、地方独立坐标系:、地方独立坐标系: 独立坐标系与城市坐标系独立坐标系与城市坐标系79城市独立坐标系城市独立坐标系 依据依据城市测量规范城市测量规范 原则边长投影长度变形不大于原则边长投影长度变形不大于2.5cm/km(1/42.5

44、cm/km(1/4万万) )l高程归化改正将地面上观测的长度元素归算到参考椭球面上而产生的改正l高斯投影改正将参考椭球面上的长度经高斯投影归算到高斯平面上而产生的改正 类型类型l国家统一坐标系l抵偿坐标系(中央子午线与国家系相同,边长投影面与国家系不同)l任意带坐标系(中央子午线与国家系不同,边长投影面与国家系可同可异)2、城市独立坐标系:、城市独立坐标系:80依据依据城市测量规范城市测量规范原则边长投影长度变形要考虑以下两因素:原则边长投影长度变形要考虑以下两因素: 高程归化改正高程归化改正将地面上观测的长度元素归算到参考椭球面上而将地面上观测的长度元素归算到参考椭球面上而产生的改正产生的改

45、正 高斯投影改正高斯投影改正将参考椭球面上的长度经高斯投影归算到高斯平将参考椭球面上的长度经高斯投影归算到高斯平面上而产生的改正面上而产生的改正2.5/(1/40000)cm km81n边长的高程归化改正边长的高程归化改正 RHRHRSSmm10101RHSSm2201RHRHSSmm2200RHSRHSSmmH10mHDSR 82高程归化改正变形高程归化改正变形mH:为归算边高出参考椭球面的平均高程R:为归算边方向参考椭球法截弧的曲率半径10mHDSR 01SSD83高斯投影改正变形my为归算边两端点横坐标平均值2D总是正值,表明将投影面上的长度投影到高斯面上,总是变长的2222myDSR8

46、4n 确定坐标系的原则:确定坐标系的原则: 1)1)按面积大小来确定是否采用高斯平面坐标系;按面积大小来确定是否采用高斯平面坐标系; 2) 2)按长度变形值来决定是否采用国家按长度变形值来决定是否采用国家3 3度带高斯平面直角坐标系;度带高斯平面直角坐标系; 如果不考虑边长的归化改正,仅考虑边长的投影改正,城市如果不考虑边长的归化改正,仅考虑边长的投影改正,城市控制网要求长度变形小于控制网要求长度变形小于1/400001/40000,相当于离中央子午线小于,相当于离中央子午线小于45km45km。否则,就不能采用否则,就不能采用3 3带坐标。带坐标。城市坐标系的确定原则城市坐标系的确定原则85

47、总变形:总变形:)2(2221RHRyDDDDmm某测区海拔mHm2000, 最边缘离中央子午线100km当D=1000m时,则有mDRHDm313. 01mDRyDm123.02222mDDD19. 02186减小投影变形的方法减小投影变形的方法总变形)2(2221RHRyDDDDmmmy3)同时改变和mH1)改变my:任意带坐标系2)改变:抵偿坐标系:高程抵偿面的任意带坐标系mHn 减小投影变形的方法减小投影变形的方法87 关键确定中央子午线 特点: 中央子午线与国家系不同 边长投影面与国家系相同任意带坐标系的确定任意带坐标系的确定任意带坐标系的确定任意带坐标系的确定: :88关键确定抵偿

48、投影面特点:l中央子午线与国家系相同l边长投影面与国家系不同 黄海平均海水面 城市平均高程面 抵偿投影面n方法:l传统做法使测区最边缘处长度变形为零l使单位长度的最大变形最小l使单位长度变形平方和最小抵偿坐标系的确定抵偿坐标系的确定maxminiS2m iniS 抵偿坐标系的确定抵偿坐标系的确定: :8902220RyRHRyH220mHHH0 设测区中心点的3 横坐标为 y0,要使中心点投影后的长度比为0,必须使投影面比测区平均高程面低H,即:解得:若测区的平均高程为Hm ,则抵偿面高程 H0 为:抵偿坐标系抵偿坐标系90 关键确定中央子午线, 确定抵偿投影面 特点: 中央子午线与国家系不同

49、 边长投影面与国家系不同高程抵偿面的任意带坐标系的确定高程抵偿面的任意带坐标系的确定高程抵偿面任意带坐标系的确定高程抵偿面任意带坐标系的确定: :9140000 12)(2200RyyRHHs400001222220220RyyyRyRHRHHms40000122220Ryyy40000122220Ryyy 设某边长的平均高程为Hs ,平均横坐标为y0 +y,要使该边长的投影变形小于1/40000,满足条件: 对于平坦测区,各边长的平均高程与测区平均高程之差对投影的影响可忽略,则有:即:92 将地球平均半径R = 6370km,y0 = 60km,代入上面两式,可算得: y = 15 km,

50、y = -20 km优点:坐标与国家坐标接近,距离改化可忽略缺点:投影适用范围小,边缘区域的长边要加方向改化,应用不方便。93p 投影面的高程;p 中央子午线的经度或其所在的位置;p 起始点坐标(起始点坐标加常数)和起始方位角。确定平面坐标系的三大要素确定平面坐标系的三大要素确定平面坐标系的三大要素确定平面坐标系的三大要素:94独立网椭球变换方法独立网椭球变换方法 GPS技术已被广泛应用于独立坐标的建立。众所周知,独立坐标一般应用于城市测量与工程测量领域,独立坐标系的主要特点限制长度变形,一般是以测区的平均高程面(或抵偿高程面)作为坐标的投影面,且要求实地量测边长与坐标反算边长应满足一定的限差

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|