ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:1.16MB ,
文档编号:2046904      下载积分:14 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2046904.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(罗嗣辉)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学课件:13.8 一般周期的傅里叶级数.ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学课件:13.8 一般周期的傅里叶级数.ppt

1、第八节第八节一般周期函数的傅里叶级数一般周期函数的傅里叶级数 一、以一、以2 l 为周期的函数的为周期的函数的傅里叶展开傅里叶展开 机动 目录 上页 下页 返回 结束 二、傅里叶级数的复数形式二、傅里叶级数的复数形式 第13章 一、以一、以2 l 为周期的函数的傅里叶展开为周期的函数的傅里叶展开周期为 2l 函数 f (x)周期为 2 函数 F(z)变量代换lxz将F(z) 作傅氏展开 f (x) 的傅氏展开式机动 目录 上页 下页 返回 结束 设周期为2l 的周期函数 f (x)满足收敛定理条件,则它的傅里叶展开式为10sincos2)(nnnlxnblxnaaxf(在 f (x) 的连续点

2、处)naxlxnxflbllndsin)(1其中定理定理.l1xlxnxflldcos)(),2, 1,0(n),2, 1(n机动 目录 上页 下页 返回 结束 证明证明: 令lxz, 则,llx,z令)(zF, )(z lf则)2()2(zlfzF)2(lz lf)(z lf)(zF所以)(zF且它满足收敛定理条件, 将它展成傅里叶级数:10sincos2)(nnnznbznaazF( 在 F(z) 的连续点处 )(xf变成是以 2 为周期的周期函数 , 机动 目录 上页 下页 返回 结束 zznzFandcos)(1其中zznzFbndsin)(1令lxzlan1xlxnxflbllnds

3、in)(1lxnblxnaaxfnnnsincos2)(10),2, 1,0(n),3,2, 1(n),2, 1,0(n),3,2, 1(n( 在 f (x) 的 连续点处 )xlxnxflldcos)(证毕 机动 目录 上页 下页 返回 结束 说明说明:1)(nnbxf),2, 1(dsin)(nxlxnxfbn其中(在 f (x) 的连续点处)lxnsinl20l如果 f (x) 为偶函数, 则有(在 f (x) 的连续点处)2)(0axf),2, 1,0(dcos)(nxlxnxfan其中1nnalxncos注注: 无论哪种情况 ,).()(21xfxf在 f (x) 的间断点 x 处,

4、 傅里叶级数收敛于l20l如果 f (x) 为奇函数, 则有 机动 目录 上页 下页 返回 结束 )(tfto0d) 1sin() 1sin(ttntn例例1. 交流电压tEtEsin)(经半波整流后负压消失,试求半波整流函数的解解: 这个半波整流函数2,它在)(tfna0dcossinttntE,sintE,0傅里叶级数.,上的表达式为0t t02E的周期是22机动 目录 上页 下页 返回 结束 000d2sintt21Ea 2cos212E时1n0d) 1sin() 1sin(ttntn2Eantnn) 1cos() 1(12E0tnn) 1cos() 1(1111) 1(111) 1(2

5、1nnnnEnn) 1(1) 1(21nEn32 ,0 kn,)41 (22kE), 1,0(kkn2机动 目录 上页 下页 返回 结束 tttEbdsinsin01ttntnEd) 1cos() 1cos(20) 1() 1sin(2ntnEbn0) 1() 1sin(0ntnttntEbndsinsin0ttEd)2cos1 (20022sin2ttE2En 1 时机动 目录 上页 下页 返回 结束 由于半波整流函数 f ( t ),),(上连续在Etf)(tEsin2tkkEk2cos411212)(t直流部分说明说明:交流部分由收收敛定理可得2 k 次谐波的振幅为,14122kEAk

6、k 越大振幅越小,因此在实际应用中展开式取前几项就足以逼近f (x)了.to22)(tf上述级数可分解为直流部分与交流部分的和. 机动 目录 上页 下页 返回 结束 例例2. 把展开成)20()(xxxf(1) 正弦级数; (2) 余弦级数.解解: (1) 将 f (x) 作奇周期延拓, 则有2oyx),2, 1,0(0nan2022xbnxxnd2sin0222sin22cos2xnnxnxnnncos4),2, 1() 1(41nnn14)(nxf2sin) 1(1xnnn)20( x在 x = 2 k 处级数收敛于何值?机动 目录 上页 下页 返回 结束 2oyx(2) 将 作偶周期延拓

7、,)(xf),2, 1(0nbn2022xanxxnd2cos0222cos22sin2xnnxnxn1) 1(422nnxxf)(200d22xxa2kn2,0,) 12(822k),2, 1(k则有1222) 12(cos) 12(181kxkk)20( x12 kn机动 目录 上页 下页 返回 结束 说明说明: 此式对0 x也成立,8) 12(1212kk由此还可导出121nn8212141nn61212nn12)2(1kk1222) 12(cos) 12(181)(kxkkxxf)20( x12) 12(1kk据此有2oyx机动 目录 上页 下页 返回 结束 当函数定义在任意有限区间上

8、时,方法方法1, , )(baxxf令,2abzx即2abxzzabzfxfzF, )2()()(2,2abab在2,2abab上展成傅里叶级数)(zF周期延拓将2abxz)(xf在,ba代入展开式上的傅里叶级数 其展开方法为:xab2ba方法方法2, , )(baxxf令,azxzazfxfzF, )()()(ab,0在ab,0上展成正弦或余弦级数)(zF奇或偶式周期延拓将 代入展开式axz)(xf在,ba即axz上的正弦或余弦级数 xab)(zFz55例例3. 将函数)155(10)(xxxf展成傅里叶级数.解解: 令,10 xz设)55( )10()()(zzzfxfzF将F(z) 延拓

9、成周期为 10 的周期函数, 理条件.由于F(z) 是奇函数, 故),2, 1,0(0nan5052zbnzznd5sinnn10) 1(),2,1(n则它满足收敛定5sin) 1(10)(1znnzFnn)55(z5sin) 1(10101xnnxnn)155( x机动 目录 上页 下页 返回 结束 利用欧拉公式欧拉公式二、傅里叶级数的复数形式二、傅里叶级数的复数形式设 f (x)是周期为 2 l 的周期函数 , 则lxnblxnaaxfnnnsincos2)(1021coslxnlxnlxniiee2sinilxnlxnlxniiee1022)(nnaaxflxnlxniiee2nbilx

10、nlxniiee1022nnnbiaa2nnbia lxnielxnie0cncnc机动 目录 上页 下页 返回 结束 llxfl)(21llxxfld)(21200ac llxlxnxfldcos)(1212nnnbiacllxlxnxflidsin)(llxlxnilxnxfldsincos)(21llxfl)(21),2, 1(dnxlxnie注意到2nnnbacxd同理),2, 1(nlxnie机动 目录 上页 下页 返回 结束 傅里叶级数的复数形式:xexflcTxnillnd)(212Txninnecxf2)(),2, 1,0(n因此得机动 目录 上页 下页 返回 结束 式的傅里叶

11、级数 . 例例4. 把宽为 ,高为 h ,周期为 T 的矩形波展成复数形解解: 在一个周期,22TT)(tu它的复数形式的傅里叶系数为 2 2d1thTTh内矩形波的函数表达式为 022d)(1TTttuTc22Toyx22Th22,th2222,0TTtt机动 目录 上页 下页 返回 结束 tetuTTtnid)(12 22nc22 2d1tehTTtniTnnhsin),2,1(nThtu)(hTtnineTnn2sin10n), 1,0,2(kTkt 2inTThTniTnieeinh21Ttnie222机动 目录 上页 下页 返回 结束 为正弦 级数. 内容小结内容小结1. 周期为2l

12、 的函数的傅里叶级数展开公式)(xf20alxnblxnannnsincos1(x 间断点)其中naxlxnxfllldcos)(1nbxlxnxfllldsin)(1), 1 ,0(n),2, 1(n当f (x)为奇 函数时,(偶)(余弦)2. 在任意有限区间上函数的傅里叶展开法变换延拓3. 傅里叶级数的复数形式利用欧拉公式导出机动 目录 上页 下页 返回 结束 思考与练习思考与练习1. 将函数展开为傅里叶级数时为什么最好先画出其图形?答答: 易看出奇偶性及间断点, 2. 计算傅里叶系数时哪些系数要单独算 ?答答: 用系数公式计算如分母中出现因子nk从而便于计算系数和写出收敛域 .,时nnb

13、akkba 或则必须单独计算.习题课 目录 上页 下页 返回 结束 备用题备用题) 11(2)(xxxf将期的傅立叶级数, 并由此求级数121nn(91 考研) 解解:y1ox12)(xf为偶函数,0nb100d)2(2xxa5xxnxand)cos()2(2101) 1(222nn因 f (x) 偶延拓后在,),(上连续 x225,) 12cos() 12(14122kkk展开成以2为周1 , 1x的和.故得 机动 目录 上页 下页 返回 结束 , 0 x令得122) 12(14252kk故8) 12(1212kk121nn12) 12(1nn12)2(1nn12141nn121nn12) 12(134nn62机动 目录 上页 下页 返回 结束

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|