1、 第一章 二、自变量趋于有限值时函数的极限二、自变量趋于有限值时函数的极限第三节, )(xfy 对0)1(xx 0)2(xx0)3(xxx)4(x)5(x)6(自变量变化过程的六种形式:一、自变量趋于无穷大时函数的极限一、自变量趋于无穷大时函数的极限本节内容本节内容 :机动 目录 上页 下页 返回 结束 函数的极限 XXAAOxy)(xfy A定义定义1 . 设函数xxf当)(大于某一正数时有定义,若,0X,)(,AxfXx有时当则称常数时的极限,Axfx)(lim)()(xAxf当或几何解释几何解释:AxfA)(XxXx或记作直线 y = A 为曲线)(xfy 的水平渐近线 .,0 xxf当
2、)(A 为函数一、自变量趋于无穷大时函数的极限一、自变量趋于无穷大时函数的极限例例1. 证明. 01limxx证证:01xx1取,1X,时当Xx 01x因此01limxx注注:就有故,0欲使,01x即,1xoxyxy1机动 目录 上页 下页 返回 结束 .10的水平渐近线为xyyx1x11oyxxxgxxf11)(,1)(直线 y = A 仍是曲线 y = f (x) 的渐近线 .两种特殊情况两种特殊情况 :Axfx)(lim,0,0X当Xx 时, 有 Axf)(Axfx)(lim,0,0X当Xx时, 有 Axf)(几何意义几何意义 :例如,都有水平渐近线;0yxxxgxf21)(,21)(都
3、有水平渐近线. 1y又如,oxyx21x21机动 目录 上页 下页 返回 结束 二、自变量趋于有限值时函数的极限二、自变量趋于有限值时函数的极限1. 0 xx 时函数极限的定义时函数极限的定义机动 目录 上页 下页 返回 结束 定义定义2 . 设函数)(xf在点0 x的某去心邻域内有定义 ,0,0当00 xx时, 有 Axf)(则称常数 A 为函数)(xf当0 xx 时的极限,Axfxx)(lim0或)()(0 xxAxf当即,0,0当),(0 xx时, 有若记作 Axf)(Axfxx)(lim0几何解释几何解释:0 x0 xAAAx0 xy)(xfy 极限存在函数局部有界这表明: 机动 目录
4、 上页 下页 返回 结束 例例2. 证明)(lim0为常数CCCxx证证:Axf)(CC 0故,0对任意的,0当00 xx时 , 0CC因此CCxx0lim总有机动 目录 上页 下页 返回 结束 例例3. 证明1)12(lim1xx证证:Axf)(1) 12(x12x欲使,0取,2则当10 x时 , 必有1) 12()(xAxf因此,)( Axf只要,21x1)12(lim1xx机动 目录 上页 下页 返回 结束 例例4. 证明211lim21xxx证证:Axf)(2112xx21 x故,0取,当10 x时 , 必有2112xx因此211lim21xxx1 x机动 目录 上页 下页 返回 结束
5、 例例5. 证明: 当00 x证证:Axf)(0 xx 001xxx欲使,0且. 0 x而0 x可用0 xx因此,)( Axf只要,00 xxx00limxxxx.lim00 xxxx时00 xxxx故取,min00 xx则当00 xx时,00 xxx保证 .必有ox0 xx机动 目录 上页 下页 返回 结束 2. 左极限与右极限左极限与右极限左极限 :)(0 xfAxfxx)(lim0,0,0当),(00 xxx时, 有.)( Axf右极限 :)(0 xfAxfxx)(lim0,0,0当),(00 xxx时, 有.)( Axf定理定理1 .Axfxx)(lim0Axfxfxxxx)(lim)
6、(lim00机动 目录 上页 下页 返回 结束 例例6. 设函数0,10,00, 1)(xxxxxxf讨论 0 x时)(xf的极限是否存在 . xyo11 xy11 xy解解:因为)(lim0 xfx) 1(lim0 xx1)(lim0 xfx) 1(lim0 xx1显然, )0()0( ff所以)(lim0 xfx不存在 .机动 目录 上页 下页 返回 结束 内容小结内容小结1. 函数极限的或X定义及应用2.与左右极限等价定理思考与练习思考与练习1. 若极限)(lim0 xfxx存在,)()(lim00 xfxfxx2. 设函数)(xf且)(lim1xfx存在, 则. a3是否一定有第四节 目录 上页 下页 返回 结束 1, 121,2xxxxa?