ImageVerifierCode 换一换
格式:PPT , 页数:16 ,大小:802.50KB ,
文档编号:2046997      下载积分:14 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2046997.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(罗嗣辉)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学课件:9.5 高阶偏导数.ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学课件:9.5 高阶偏导数.ppt

1、第五节机动 目录 上页 下页 返回 结束 高阶偏导数概念及其计算高阶偏导数概念及其计算高阶偏导数 第九章 高阶偏导数高阶偏导数设 z = f (x , y)在域 D 内存在连续的偏导数),(, ),(yxfyzyxfxzyx若这两个偏导数仍存在偏导数,)(xz)(yzx )(xzy ),()(22yxfyzyzyyy则称它们是z = f ( x , y ) 的二阶偏导数 . 按求导顺序不同, 有下列四个二阶偏导22xz);,(yxfxxyxz2),(yxfyx);,(2yxfxyzxyx机动 目录 上页 下页 返回 结束 数:类似可以定义更高阶的偏导数.例如,例如,z = f (x , y)

2、关于 x 的三阶偏导数为3322)(xzxzxz = f (x , y) 关于 x 的 n 1 阶偏导数 , 再关于 y 的一阶) (yyxznn1机动 目录 上页 下页 返回 结束 偏导数为11nnxzyxe22例例1. 求函数yxez2.23xyz解解 :xz22xz) ( 223xyzxxyzyzxyz2yxz2 22 yz注意注意: :此处,22xyzyxz但这一结论并不总成立.yxe2yxe22yxe2yxe22yxe22yxe24机动 目录 上页 下页 返回 结束 的二阶偏导数及 0,)(4222224224yxyxyyxxxyfyfxxy)0, 0(), 0(lim0),(yxf

3、y例如例如,),(yxfx)0 , 0(yxfxfxffyyxxy)0, 0()0,(lim)0 , 0(0二者不等yyy0lim1xxx0lim1),(yxf0, 022 yx0,)(4222224224yxyxyyxxy0,022 yx0,222222yxyxyxyx0, 022 yx机动 目录 上页 下页 返回 结束 例例2. 证明函数222,1zyxrru满足拉普拉斯0222222zuyuxu证:证:xu22xu利用对称性 , 有,3152322ryryu222222zuyuxuu方程xrr21rxr2131rxrrx4352331rxr5232231rzrzu52223)(33rzy

4、xr2r0机动 目录 上页 下页 返回 结束 ,),()()(00连续都在点和若yxx,yfx,yfxyyx),(),(0000yxfyxfxyyx则证明 目录 上页 下页 返回 结束 定理定理.例如例如, 对三元函数 u = f (x , y , z) ,),(),(),(zyxfzyxfzyxfyxzxzyzyx说明说明:本定理对 n 元函数的高阶混合导数也成立.函数在其定义区域内是连续的 , 故求初等函数的高阶导数可以选择方便的求导顺序.),(),(),(zyxfzyxfzyxfxyzzxyyzx因为初等函数的偏导数仍为初等函数 ,当三阶混合偏导数在点 (x , y , z) 连续连续时

5、, 有而初等证证: :令),(),(),(0000yxxfyyxxfyxF),(),()(00yxfyyxfx则),(yxFxxx)(10 xyxxfyyxxfxx ),(),(010010yxyyxxfyx),(2010),(),(0000yxfyyxf),(),()(00yxfyxxfy)10(1)1,0(21,),()()(00连续都在点和若yxx,yfx,yfxyyx),(),(0000yxfyxfxyyx则)()(00 xxx机动 目录 上页 下页 返回 结束 定理定理.令),(),(),(0000yxxfyyxxfyxF),(),(0000yxfyyxf同样)()(00yyyyxy

6、yxxfxy),(4030) 1,0(43),(),(0000yxfyxfxyyx)()(因yxfyxfxyyx, 0 x故令),(4030yyxxfxy),(2010yyxxfyx在点)(00yx ,连续,得机动 目录 上页 下页 返回 结束 0y内容小结内容小结 求高阶偏导数的方法逐次求导法(与求导顺序无关时, 应选择方便的求导顺序)机动 目录 上页 下页 返回 结束 注意:多元抽象复合函数求导在偏微分方程变形与机动 目录 上页 下页 返回 结束 验证解的问题中经常遇到, 下列两个例题有助于掌握这方面问题的求导技巧与常用导数符号.补充补充为简便起见 , 引入记号,2121vuffuff )

7、,(1zyxzyxf例例1. 设 f 具有二阶连续偏导数, ),(zyxzyxfw求.,2zxwxw解解: 令,zyxvzyxuxwwvuzyxzyx),(vufw 11 fzyf 2),(2zyxzyxfzy则zxw2111 f22221211)(fyfzyxfzxyf yxf 122fy zy121 fyxf 2221,ff机动 目录 上页 下页 返回 结束 例例2. 设二阶偏导数连续,求下列表达式在),(yxfu 222222)2(,)()() 1 (yuxuyuxu解解: 已知sin,cosryrxuryxyx极坐标系下的形式xrruxu(1), 则xyyxrarctan,22rxru

8、,rxxr x2xy2)(1xy22yxy机动 目录 上页 下页 返回 结束 xu2ryururusincosyuyrru2221)(1,yxxyryyrxyxrurucossinyu22222)(1)()()(urruyuxu题目 目录 上页 下页 返回 结束 ryru2rxuuryxyx 已知rsin) (rurusincos)(xux 22)2(xururuxusincosuryxyx) (rxu) (xururusincos222cosru2cossinrucosrsinxurrucossin22222sinru2rru2sin2cos) (r注意利用注意利用已有公式已有公式机动 目录 上页 下页 返回 结束 22yu2222yuxu21r22xu22222222sincossin2cosrurrururruru22sincossin2rruru22coscossin2同理可得22ru2221urrur 122)(ururrr22222222coscossin2sinrurruru题目 目录 上页 下页 返回 结束

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|