1、氮气密封技术氮气密封技术就是用氮气补充罐内气体空间。由于氮气比油蒸气轻,所以氮气浮在油蒸气上面。当呼气时,呼出罐外的是氮气而不是油蒸气。当罐内压力降低时,氮气自动进罐补充气体空间,减少蒸发损耗,避免油品接触空气氧化。上图氮气密封系统工艺流程图氮气密封系统的流程如图所示。它主要由氮封阀、信号阀(又称控制阀)、减压阀和针形阀等部分组成。氮封阀是自力式调节阀,它能根据信号阀发出的气信号,快速作出相应动作。当信号阀打开时,氮封阀下膜室的压力下降,利用弹簧的反作用力使阀芯向下移动,阀芯处于与阀座全开位置;当信号阀关小或完全关闭时,氮封阀下膜室的压力增加,压缩弹簧,阀芯向上移动,阀芯与阀座逐渐关小或全关。
2、通过减压阀将氮气压力由 0.7MPa 降至 0.15MPa氮封系统的工作原理是:当储罐内压力低于设定值时,信号阀打开,降低氮封阀薄膜下侧压力,氮封阀也相应打开,将氮气输入罐内,使储罐压力逐渐回升到设定值。当达到设定值时,信号阀关闭,此时氮封阀薄膜下侧压力上升,氮封阀也相应关闭。如罐内压力高于设定值时,储罐呼吸阀将打开,呼出罐内气体,罐内压力下降至设定值。在我国储罐呼吸阀的正负压力设定值一般为正压 180mmH2O、负压-30mmH2O 则氮封阀压力可设定为正压 150mmH2O、负压-20mmH2O,然后根据此压力通过观测水柱表来调整信号阀、氮封阀上部的弹簧,设定回讯控制压力。自力式氮封阀自力
3、式氮封阀自力式氮封阀自力式氮封阀无需外加能源,利用被调介质自身能量为动力源,引入压力阀的指挥器以控制压力阀芯位置,改变流经阀门介质流量,使阀门后端压力保持恒定。公称压力有 1.0、1.6Mpa;压力分段调节从 0.5 至 1000Kpa,工作温度 0100;法兰标准按 GB9113-88,凸面法兰。结构长度按GB12221-89 标准。产品公称压力等级有 PN1.6、4.0(MPa);口径范围 DN20100;流量特性为快开。压力设定在指挥器上通过调节弹簧实现,因而方便、快捷、省力省时,可运行状态下连续设定,且结构简单,维护工作量小。减压比4000:1,控制精度高;动作灵敏,密封性好;广泛应用
4、各种工业设备中用于气体减压稳压的自动控制,特别适用于储罐的氮封系统。截止阀作为附件,阀门在工作前关闭此截止阀,以防止超设定压力和杂质进入执行机构,以保护执行机构内的膜片和密封件,及超设定压力而产生阀门整体打坏现象。产品特点:产品特点:1、压力设定在指挥器上实现,因而方便、快捷、省力省时可运行状态下连续设定。2、控制精确度比 ZZY 型自力式高 1 倍左右,故适合在控制精度高的场合使用。3、对同一台阀而言,调节范围比 ZZY 型自力式广。4、反应特别灵敏,极小的压力(如 50mm 水柱的压力)或极小的压力变化都可以感测出来。5、减压比特别大,例如阀前 0.8MPa,阀后 50mmH2O,压差比达
5、 1600。1、压力设定弹簧 2、指挥器执行机构 3、指挥阀 4、针阀 5、主阀 6、空气过滤减压器其中自力式氮封阀可以用 1 台 ZZYP 自力式压力调节阀+1 台 ZZVP 型自力式微压调节阀代替口主要零件材料口主要零件材料零件名称材料阀体ZG230-450、ZG0Cr18Ni9、ZG0Cr18Ni12Mo2阀芯1Cr18Ni9、0Cr18Ni12Mo2(堆焊 Stellite) PTFE阀座1Cr18Ni9、0Cr18Ni12Mo2(堆焊 Stellite)阀杆1Cr18Ni9、0Cr18Ni12Mo2橡胶膜片丁腈橡胶夹增强涤纶织物膜盖Q235、Q235 涂 PTFEO 形圈耐油橡胶、聚
6、四氟乙烯应用举例应用举例1、代替 ZZV 型自力式微压调节阀ZZV 型自力式微压调节阀阀前一般要求介质压力0.1MPa,而自力式氮封阀则不受此限制。2、用于氮封装置氮封装置的贮罐内成品油上端覆盖氮气,其压力一般在 100mmH2O 左右,通过氮封保护装置加以控制。出液阀开启放油时,贮罐内液位下降,此时,ZZDG-16B 供氮阀开度增大,向贮罐内补充氮气使压力增加到设定值为止。进液阀开启进油时,液位上升,气相部分容积减小,氮气压力上升,此时 ZZDG-16B 供氮阀关闭,而 ZZDX-16K 泄氮阀在压力控制器作用下开启,排出氮气使压力降至设定值。为确保储罐安全,应在罐顶设置呼吸阀。供氮压力调整
7、: 在 ZZDG-16B 型供氮阀选定一设定值如 1KPa(100mm.W.C), 通过调整主弹簧 1的预压缩(拉伸)量来达到;泄氮压力调整:在 ZZZDX-16K 泄氮阀中的压力控制器部分,通过调整主弹簧预压缩量达到,一般为避免氮封装置启闭频繁,泄氮设定值应远离供氮压力设定值,如 2Kpa(200mm.W.C)。呼吸阀设定值调整:在上述两设定值调整好后,为避免呼吸阀启闭频繁,呼吸阀设定值应大于泄压设定值。两者设定期亦不能靠得太近。呼吸阀型号为:ZZFX-10。ZZDG-16B 压力设定值为 PC,ZZDX-16K 压力设定值 P1,PC 与 P1 两值不能靠得太近,以免阀门工作太频繁,呼吸阀
8、的排放压力 P2 的设定值应大于 P1,P2 与 P1 两值也不能靠得太近。三者关系 PC P1 P2。应用设计实例应用设计实例上例以贮罐 1KPa 为例1、ZZDG-16B 供氮阀的取压位置应离贮罐(或缓冲罐)较近。2、压力表应置于取压点不远处,以免引起不必要的争议。3、ZZDG-16B 供氮阀阀后管道不宜太小。连接尺寸及标准连接尺寸及标准法兰标准:GB9113-2000;法兰密封面型式:凸面;信号接口:内螺纹 M161.5;阀体法兰及法兰端面距离可以按用户指定的标准制造。如 ANSI、JIS、JPI 等标准订货须知订货须知订货时请用户提供以下资料:调压阀名称、型号公称通径(mm)公称压力(
9、MPa)额定流量系数(Kv)固有流量特性介质名称工作压力及范围阀体、阀内件及填料材质其他特殊要求浙江自力式调节阀比较氮封阀与安全阀有何异同?自力式调节阀氮封阀氮封阀氮封阀是一款自力式调节阀。 氮封阀的减压效果好,控制精度高; 供氮装置采用指挥器操作,阀杆所受摩擦力小,反映迅速,控制精度高;装置工作平稳,压力检测膜片有效面积大,确保储罐的安全,需在罐顶设置呼吸阀;能在无电、无气的场合工作,装置供氮、泄氮压力设定方便,可在连续生产的条件下进行既方便,又节约能源,降低成本。氮封系统用来防止介质蒸气泄露到大气中或是用来防止潮湿或者污物进入储罐.氮封阀主要是在储罐液体上面保持一个紧密气体密封(通常是氮或
10、二氧化碳气体)。在储罐蒸汽空间内有带压的保护气体。氮气可以起到置换装置介质、平衡系统的压力等功能,用于保持容器顶部保护气的压力恒定,一般的氮气压力是常压,主要作用在于减少挥发,如苯罐,二是放置介质与空气的反应,如碱罐。进罐压力一般减压至 1bar。适用于各类大型储罐的气封保护系统,运行可靠,并广泛适用于石油、化工等行业。氮封阀设在罐顶的取压点的介质经导压管引入检测机构, 反馈结构的设计使得介质直接经阀盖进入检测机构,在罐顶的罐呼吸阀能起安全作用,一般泄氮阀的压力设定点略大于供氮阀的压力设定点,以免供、泄氮装置频繁工作。在流量控制方面每个阀门都配有控制流量百分比的固定板孔,气体密封系统的每个阀门
11、尺寸根据气体流量表排列,根据提供的稳定气体压力计算适应特定需要气体密封的流量。安全阀是一种由进口静压开启的自动泄压防护装置, 它是压力容器最为重要的安全附件之一, 它的功能是: 当容器内压力超过某一定值时, 依靠介质自身的压力自动开启阀门,迅速排出一定数量的介质。当容器内的压力降到允许值时,阀又自动关闭,使容器内压力始终低于允许压力的上限,自动防止因超压而可能出现的事故,所以安全阀又被称为压力容器的最终保护装置。还有就是氮封阀是可以呼,也可以吸,安全阀只泻放,安全阀泻放后必须重新校验,从这个方面讲,氮封就可以重复利用了,安全阀跳了以后就是事故了,氮封从设计上讲,就是用来“跳”的。富阳源丰阀业有
12、限公司是一家专业的调节阀生产厂家,主要产品有各类气动调节阀、电动调节阀、自力式调节阀、高性能蝶阀、氮封阀和各种特殊阀门制造和配套。本公司重点推荐自力式调节阀,自力式微压阀,自力式减压阀,自力式温度调节阀,氮封阀,高性能蝶阀等,欢迎来电选购 !附录 B 条文解释 1.3 条根据 2000 年-2010 年期间集团公司所属炼油企业轻质油储罐安全事故情况分析, 储存介质硫含量及挥发性组分含量高等因素是导致轻质油储罐发生火灾事故的主要原因。因此,本指导意见主要将石脑油储罐和中间原料储罐作为治理重点。其它轻质油储罐,在遵循现行标准和规范的基础上,可根据实际情况参照执行。3.1.1条 1 蒸汽压指标石油化
13、工企业设计防火规范)(OB50160-2008)6.2.3 条规定, “储存沸点低于 45的甲 B 液体宜选用压力或低压储罐” , 换算成储存温度 40时介质的蒸汽压约 85-88KPa,同时结合汽油冬季蒸汽压指标和目前石脑油组分中含有少量 C3 和 C4 等挥发性组分的特点,特规定储罐储存介质蒸汽压指标上限值为 88KPa。2 储罐选型根据国外储罐火灾事故情况统计,内浮顶罐和外浮顶罐发生事故的概率分别为 527和2938;集团公司所属炼油企业近 10 年间发生的事故统计结果显示内浮顶储罐的事故概率要大于外浮顶储罐。因此,指导意见中对储罐选用内、外浮顶型式不进行统一规定。另外,用不锈钢材料制造
14、或使用不锈钢内衬的储罐,包括不锈钢制造的组装式内浮顶等,目前还没有相对完整的设计规范和制造标准,只有个别企业少量应用,因此,指导意见对此没有做相应规定。3.7.1 条 1 氮封的作用主要是防止硫铁化合物自燃、雷击、静电或明火等引燃罐顶空间的可燃气体,同时防止储存介质氧化聚合等。高、含硫原油直馏石脑油组分活性硫、挥发性组分含量高,焦化汽油硫含量高且易被氧化,因此,对这两种类型的储罐设置氮封是必要的。2 对其它储罐,企业可根据氮气资源情况和轻质油硫含量、蒸汽压实际情况,在确保 2 年 1 次进行全面清罐检查的基础上,可以不采用氮封措施但对设备状况良好,罐顶气相空间可燃气体浓度仍然超标的内浮顶储罐应
15、考虑增设氮封设施或其它措施。 3.7.3 条原设计的氮封设施需要将罐壁通气孔进行焊接封死的方式,该方式存在氮气长时间中断后安全运行风险较大的缺点。可拆卸方式便于氮封停止使用后能及时恢复一般内浮顶方式运行, 提高抗击风险能力。 因此对原方案修改为:新设计的内浮顶储罐,宜将环向通气孔设在罐顶边缘,通气孔边缘固定丝网处可用堵板和螺栓紧固封堵;旧罐增设氮封设施改造时,应将原通气孔的可拆卸丝网换成堵板,堵板用螺栓紧固封堵。4.1.1.3 条,为规范系统内组装式铝制内浮顶管理,在吸取国外铝制浮顶设计和制造经验的基础上,经研究后特制定本条款a)b)条(GB50341)立式圆筒形钢制焊接油罐设计规范规定浮顶外
16、边缘板的浸液深度不小于 100mm。为确保密封效果,建议浮筒的浸液深度 100mm,浮筒直径选用 200mm。j)条铝浮顶安装过程中盖板与主梁之间的连接方式采用铆接型式等方式,强度不足,易发生密闭不严、油气泄漏现象。4.1.2.1 条无论密封性能和使用寿命,弹性密封均优于板式舌型密封。拱顶罐改造为内浮顶时,原储罐壁环缝为搭接结构的,应对搭接部位打磨平滑后方可安装,否则选用板式舌型密封同样存在密封效果不佳、密封易损坏的问题。5.1.2 条该条主要依据有:(CB47561998)石油液体手工采样法6.4.7 条、6.4.2 条;(SH30972000)石油化工静电接地设计规范4.2.2 条; 易燃
17、、可燃液体防静电安全规定第八条、第二十四条;(GB133482009)液体石油产品静电安全规程4.10.1 条、3.7.3 条; 大型浮顶储罐安全设计、施工、管理规定3.3.5 条等。5.1.3 条大型浮顶储罐安全设计、施工、管理规定3.3.1 大型储罐的自动通气阀、量油孔应与浮顶做电气连接。连接方式可参考石油化工静电接地设计规范(SH30972000)及 DLT6211997)交流电气装置的接地中的规定。5.1.4 条石油库设计规范14.2.32 条:浮顶油罐或内浮顶油罐不应装设避雷针,但应将浮顶与罐体用 2 根导线做电气连接。浮顶油罐连接导线应选用横截面不小于 25mm2 的软铜复绞线。对
18、于内浮顶油罐,钢质浮盘油罐连接导线应选用横截面不小于 16mm2 的软铜复绞线;铝质浮盘油罐连接导线应选用直径不小于 18mm 的不锈钢钢丝绳。根据目前使用铜质导线宜出现腐蚀断裂等问题,本次对内浮顶导静电线的材质提出改用不锈钢材质,同时增加了导线直径和数量,并对导线的连结方式进行了明确说明,以提高导静电、抗腐蚀性能。5.2.5 条大型浮顶储罐安全设计、施工、管理规定3.2.7 条;(GBl5599-2009)石油与石油设施雷电安全规范4.1.3 条:宜采用有效的、可靠的连接方式将浮顶与罐体沿罐周做均布的电气连接,连接点沿罐壁周长的间距不应大于 30m;(APIRP545-2009)地上易燃液体
19、储罐雷电防护推荐作法4.2.1.2.2 也做了相关规定,要求浮顶与罐壁之间应通过适当数量的旁路跨接电缆实现直接的电气连接,每个旁路跨接电缆,包括连接点两端的电阻值应小于 003,旁路跨接电缆应保持最短,宜沿罐壁四周不超过 30m 均匀布置,最少不小于 2 条。6.3.1 条(CB50128)立式圆筒形钢制焊接储罐施工及验收规范要求:储罐充水试验时,所有与严密性试验有关的焊缝均不得涂刷油漆;(SHS01012)常压立式圆筒形钢制焊接储罐维护检修规程有同样规定由于轻质油罐腐蚀性较强,为确保防腐质量,规定储罐防腐应在充水试验后进行7.1.4 条大型浮顶储罐安全设计、施工、管理规定10.3.2 条:应
20、控制油品输入输出的初始流速和最大流速。在浮顶未完全浮起前应控制进油管口处的流速不大于1ms,待浮顶完全浮起后最大流速不大于 4.5ms; 装卸油品码头防火设计规范(JTJ23799)5.2.2.3 条,管道设计流速应符合:原油或成品油在正常作业状态时,管道安全流速不应大于 4.5ms。8.3.1 条根据茂名、天津、镇海等多家企业轻质油储罐运行经验和检查情况,轻质油储罐在加工高硫或合硫原油 2 年左右易发生着火事故,为确保安全,指导意见对加工高硫、含硫原油及无氮封措施的企业,规定轻质油储罐的全面清罐检查周期为 2 年。附件 2 氮封设计方案方案一:压力控制设计方案(LPEC)一、基本原理在储罐上
21、设置氮封系统,维持罐内气相空间压力在 1.2KPa 左右,当气相空间压力高于 1.4KPa 时,氮封阀关闭,停止氮气供应;当气相空间压力低于 0.8KPa 时,氮封阀开启,开始补充氮气,保证储罐在正常运行过程中不吸进空气,防止形成爆炸性气体储罐氮封系统使用的氮气纯度不宜低于 9996,氮气压力宜为 05-06MPa。二、工艺方案以 4 台轻质油内浮顶储罐组成的罐组为例,设计方案如下:1内浮顶储罐改造 1)封堵储罐罐壁(顶)的通气口。 2)核算罐顶呼吸阀是否满足设置氮封后的需求。 呼吸阀的数量及规格按照 石油化工储运系统罐区设计规范 SHT3007-2007 确定(见表一)。 呼吸量除满足储罐的
22、大、小呼吸外,还应考虑氮封阀不能关闭时的进气量等因素。3)在储罐罐顶增加氮气接入口和引压口为确保压力取值的准确性,两开口之间的距离不宜小于 1m。4)量油孔应加导向管,确保量油作业时不影响氮封压力。5)储罐罐顶增加紧急泄压人孔接口。2工艺流程 1)在每台储罐上设置先导式氮封阀组和限流孔板旁路, 正常情况下使用氮封阀组维持罐内气相空间压力在 1.2KPa 左右,当气相空间压力高于 1.4KPa 时,氮封阀关闭,停止氮气供应;当气相空间压力低于 0.8KPa 时,氮封阀开启,开始补充氮气;当氮封阀需要检修或故障时,使用限流孔板旁路给储罐内补充氮气,压力高于 1.5KPa 时,通过带阻火器的呼吸阀外
23、排(短时间连续补充氮气)。2)当氮封阀事故失灵不能及时关闭,造成罐内压力超过 1.5Kpa 时,通过带阻火器的呼吸阀外排;当氮封阀事故失灵不能及时开启时,造成罐内压力降低至0.3Kpa 时,通过带阻火器呼吸阀向罐内补充空气,确保罐内压力不低于储罐的设计压力低限(0.5Kpa)。3)为确保设置氮封储罐事故工况下的安全排放,应在储罐上设置紧急泄放阀,紧急泄放阀定压不应高于储罐的设计压力上限(20Kpa)。4)当需要使用限流孔板旁路补充氮气时,流量宜等于油品出罐流量,氮气管道的管径为 DS50,氮气的操作压力为 0.5MPa。5)若在相同油品储罐之间设置有气相联通管道,每台储罐出口均应设置阻火器,以
24、防止事故扩大。6)阻火器应选用安全性能满足要求的产品,且阻力降不应大于 0.3KPa。呼吸阀选用表储罐公称容量(m3)呼吸阀数量公称直径(mm) 10001200 20002150 30002200 4000220050002250 100002300 200003300 300004300 500004300方案二:氧含量控制设计方案(SEl)一、基本原理在储罐上设置氮封系统,维持罐内气相空间氧气浓度不大于 5,消除爆炸条件。二、工艺方案以 4 台轻质油内浮顶储罐组成的罐组为例,设计方案如下:1内浮顶储罐改造1)在储罐罐顶透光孔法兰盖处增加开口,用于安装氧气浓度检测器2)封堵储罐罐壁的通气口
25、,同时在罐顶增加呼吸阀接口。呼吸阀的数量及规格按照(SHT3007-2007)石油化工储运系统罐区设计规范确定。3)在储罐罐顶增加氮气接入口。4)在储罐罐顶增加气相联通管接口2工艺流程1)在储罐内安装氧气检测器,实时监测储罐内气相空间氧气浓度,同时将高浓度报警与氮气管道控制阀门联锁当氧气浓度达到高浓度值时报警,联锁打开氮气阀门,向储罐内补充氮气,直至检测指标达到设定要求时联锁关闭氮气阀门。补充氮气的流量控制使用限流孔板,流量宜控制在 Q=Q1-Q2(Q1油品出罐流量,Q2气相连通罐中与油品出罐同时进行的油品进罐流量),且 Q 不应小于 100m3h,氮气管道的管径为 DN50,氮气的操作压力为
26、 0.5Mpa氧气浓度监测信号引入控制室,控制室设氧气浓度超标报警仪。2)同一种油品的多个储罐在生产运行过程中,储罐区域收油作业和付油作业经常同时进行。为节省氮气用量,建议在同种油品储罐之间设置气相联通管道,可以实现多个运行过程中的储罐进气量和排气量的部分平衡,减少氮气用量和作业时的油气排放量。联通管道的管径为 DNl50,气体的流通能力为 500m3h。管道及仪表流程图见附图1。氧气检测器、切断阀仪表规格书见附表。3仪表选型说明1)氧气气体检测器采用电化学探头。2)切断阀采用气动切断球阀。3)氮气补气总管上配置涡街流量计进行氮气流量监测。4安装布置方案1)氧气浓度检测器通过透光孔安装在储罐拱
27、顶与内浮盘之间,为保证不影响储罐内浮盘的正常升降,氧气检测器的安装高度宜为储罐内浮盘之上 300mm。2)罐顶氮气接口的开口方位宜位于罐顶中心部位,氮气管道在罐内部分采用橡胶软管。为保证换气效果良好,氮气橡胶软管出口宜接近浮盘。可在氮气橡胶软管出口连接一个环形不锈钢管,管壁水平方向上开若干个通气孔,用于向四周喷射氮气。环形不锈钢管应固定安装在浮盘上。3)储罐之间设置 DNl50 气相联通管道,每个储罐的气相联通管道均应设置管道阻火器,阻火器应选用安全性能满足要求的产品。阻火器应尽量靠近储罐接口安装,每个储罐的气相联通管道均应设置截断阀。气相联通管道宜在罐顶之间跨接。若罐间距较大,气相联通管道需
28、要设在地面时,应在管道的低点设置排凝管及阀门。4)在储罐罐顶中心位置安装带阻火器的呼吸阀,呼吸阀的数及规格推荐如下:呼吸阀选用表储罐公称容量(m3) 呼吸阀数量公称直径(mm)1000 120020002 1503000220040002200 5000225010000230020000 3 300300004300 500004300附件 3 炼油轻质油储罐安全隐患整改项目建议表企业名称:序号类别储罐问题及整改措施简述 设备购置费 主要材料费 安装费 小计实施时间安排介质数量一 储罐选型二 氮封设施三 附件1.材质升级 2.新增内容 3.其它 四防雷、防静电设施 五 检维修费用 六 工艺整
29、改七 其它填表人:联系电话:说明:1.“检维修费用”指按照全面清罐检查时间为 2 年时需增加的检维修费用;2.“工艺整改”指为解决蒸汽压和硫含量高等隐患需采取的工艺治理措施。原原理理干气密封是一种由两个环组成的非接触式端面机械密封,由两个环组成。第一个环称为动环(配合环),在表面上刻有槽,随转子旋转。槽的下面是被称为密封坝的光滑区域。实际上密封作用就产生在这一区域,在密封坝两侧有密封气压力和大气压力的压力梯度。另一个环称为主环或静环,有光滑的表面并被固定,只允许沿轴向移动,静环由弹簧压住。在轴处于静止和机组未升压时,静环背后的弹簧使其与动环接触。当机组升压时,气体所产生的静压力将使得两个环分开
30、并形成一极薄的气膜。这间隙允许少量的密封气泄漏。当机组开始旋转时,由于动环上槽的作用产生动压力。靠近槽的根部产生一高压区域,并扩大两环间的间隙。当动静压力平衡时,两环间就形成了稳定的间隙,并在两环间形成一定流量。对于密封而言,泄漏量受压力、温度、气体的物理性能、密封尺寸、旋转速度的综合影响。两个密封面间的间隙使得密封面非接触,并保持平衡运行。干气密封的设计和运行原理在密封端面之间形成了一定尺寸的自稳定的间隙。密封运行期间,任何由于气体或轴位移所产生的变化,将产生平衡力的变化,这将引起间隙的变化。例如,间隙的增大将导致由于泵送作用的减弱而带来动压力降低,反过来,又通过静态闭合力的作用减小这一间隙
31、,回到原来的尺寸。反之,当间隙减小时,流体动力学作用增加,使得端面之间的分离力迅速增加,扩大了间隙。这种自动平衡机理保证了端面之间的间隙和泄漏量始终保持稳定。2、型式:本机组的干气密封系统,采用的是 984 干气密封/双向,带中间迷宫的串联式密封。密封气取自压缩机出口气体,开车时经增压泵进入干气密封系统。3、组成:干气密封主要有干气密封本体(含动环、静环)、主密封气除雾器和增压器、主密封气过滤器、隔离气过滤器、控制盘等组成。在结构上有三道密封,一级是密封气来自压缩机出口,经过除雾、过滤后,再经差压调节阀注入到压缩机两端的密封气腔,用动、静环之间形成的气膜将介质封住(非接触式)。二级密封气为氮气
32、,与一级密封后泄漏的少量一级密封气混合后排至火炬管网。隔离气压力略高于大气压,在轴封与轴承箱之间充氮气隔离,起到隔离润滑油的作用,隔离气另一端与二级密封后的少量泄漏气混合后排至大气。4、在轴承系统供油前,必须先启动隔离密封系统,防止润滑油进入污染干气密封系统。二、干气密封系统操作条件:1、密封端面清洁干燥2、保证密封端面和轴的垂直度3、弹簧加载后的旋转部件和密封件移动自如无卡滞4、避免物料沉积在密封腔体表面、轴和轴套上无物料结晶、聚合等情况5、工艺气侧和大气侧的密封端面形成良好的气膜,如果这些操作条件不能满足,可能造成泄漏量增加和工艺介质漏到大气侧。三、干气密封系统的投用1、检查管线、阀门等已
33、经安装完毕,管线已进行大流量爆破吹扫,投用前应检查加 200 目滤网,无任何硬颗粒杂质,也不允许有任何软杂质。2、检查各设备部件完整、齐全。3、贯通密封气系统流程、隔离氮气系统流程4、打开隔离氮气阀,投用隔离氮气系统。压力控制阀投用。5、打开循环机出口新氢引出阀,将密封气引进来。6、投用差压控制阀,各仪表引出阀确认打开。7、观察差压控制情况是否正常,一级泄露量不超标。8、观察密封气、隔离气过滤器差压指示寿命探讨寿命探讨压缩机的干气密封从理论上来就讲可以长期使用。但在实际操作中干气密封的寿命要受到很多因素的影响:1,气压机在开停机过程中会使密封面干摩擦,但设计参数允许短时间接触。2,气压机的喘振
34、对其影响也很大。3,压缩介质带液, 机组震动大,轴向推力增大,也是影响干气密封的一个因素。4,密封气的过滤质量。密封环的间隙为 3-5m,密封气带液或杂质会直接破坏密封面。5,人为操作原因引起的事故,如,忘记或后投用隔离气、缓冲气。个人认为干气密封在使用过程中,首先要避免由操作原因而损坏。其实我说的以上几点基本上都可以避免。所以应多加强操作人员的操作素质,以及学会干气密封的原理、正确使用的方法。一般来说,如果保证运行的平稳,密封气的要求,干气密封连续运行时间是很长的。但是,个人感觉开停机对密封的影响还是较大,首先,每次开停总会造成密封面干摩的。另外考虑干气密封静密封 o 型圈的老化,受介质压力
35、变化或介质化学性质影响,O 型圈也有寿命考虑。另外,机组的机械振动也会对密封有一定影响。主要还是要参考密封运行情况,有无异常(比如密封气流量波动,密封气带液,放空带油等),还要综合考虑检修周期。我们最长的一套密封运行已经超过 60 个月,但是加氢循环氢压缩机干气密封 2-3 年检修都进行了更换-主要是密封气带液-拆检发现有带液和磨损,但正常生产没问题,修复后备用了。我建议还是要准备 2 套密封,根据大修期,3 年左右更换备用,互为备用密封比较可靠。关于干气密封的更换时间我认为是物尽其用的好,毕竟泵的干密不便宜,更不用说机组的了。能够用多久就多久,而且能修复的话最好就修复。我关于此咨询过厂家,修
36、复后的干密跟新的在性能上是一样的,但是修复的价格在新干密的 40-60,所以还是物尽其用的好。干气密封在使用过程中需要注意的问题干气密封在使用过程中需要注意的问题干气密封在使用过程中需要注意的问题:干气密封作为离心压缩机的重要部件,对压缩机的平稳运行影响很大,在操作中要引起特别的注意。1)对密封介质的洁净度要求:杂质粒度3m,温度40,含液量500ppm(w/w);2)密封气、隔离气要先于润滑油供应而后于润滑油切断,避免润滑油进入密封体内污染密封面,这种状况下运行极易造成密封面的损坏。3)机组运转过程中必须保证密封气的供给,因为密封气的中断会导致密封面干磨,很短时间内密封就会烧坏,另外采用压缩
37、机自身工艺气作为密封气时要注意密封气的脱液,防止液滴进入密封面破坏密封,还要注意压缩机工艺参数变化对密封的影响,不能保证密封气供给时及时投用辅助密封气。4)杜绝机组倒转,根据螺旋槽的设计方向,气体只有沿设计方向进入螺旋槽,密封面之间才能形成气膜,脱离接触;如果机组倒转,则会导致动静环直接接触发生干摩擦,密封很快烧毁。所以,操作上遇到机组突然停车时,要及时打开反飞动阀降背压,同时要迅速关掉机组出口阀,防止机组倒转。5)干气密封本身可靠性较高,但其连锁控制系统需要根据实际情况综合考虑,避免由于假信号引起机组连锁误动作。6)运行过程中要密切注意干气密封系统有关参数的变化,从中找出干气密封运行情况的变化。必要时调节可以干气密封一级放火炬排放线的针型阀调整密封排气压力。7)由于正常时干气密封泄漏量较小,基本为设计失效流量的 1/51/8,而流量测量仪表是按照设计失效流量进行的选型,在低流量下存在较大的误差。
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。