ImageVerifierCode 换一换
格式:PPT , 页数:16 ,大小:421KB ,
文档编号:2057833      下载积分:9.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2057833.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(罗嗣辉)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学课件:D2习题课(第一章).ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学课件:D2习题课(第一章).ppt

1、习题课一、一、 导数和微分的概念及应用导数和微分的概念及应用机动 目录 上页 下页 返回 结束 二、二、 导数和微分的求法导数和微分的求法 导数与微分 第二章 一、一、 导数和微分的概念及应用导数和微分的概念及应用 导数导数 :xxfxxfxfx)()(lim)(0当时,为右导数当时,为左导数0 x)(xf0 x)(xf 微分微分 :xxfxfd)()(d机动 目录 上页 下页 返回 结束 关系关系 :可导可微( 思考 P124 题1 ) 应用应用 :(1) 利用导数定义解决的问题 (3)微分在近似计算与误差估计中的应用(2)用导数定义求极限1) 推出三个最基本的导数公式及求导法则xxxCxc

2、os)(sin;)(ln;0)(1其他求导公式都可由它们及求导法则推出;2) 求分段函数在分界点处的导数 , 及某些特殊函数在特殊点处的导数;3) 由导数定义证明一些命题.机动 目录 上页 下页 返回 结束 例例1.1.设)(0 xf 存在,求.)()(lim0200 xxfxxxfx解解: : 原式=xxfxxxfx )()(lim02002)( xx2)( xx)(0 xf 机动 目录 上页 下页 返回 结束 例例2.2.若0) 1 (f且) 1 (f 存在 , 求.tan) 1()cos(sinlim20 xexxfxx解解: 1)cos(sinlim20 xxx原式 =220)cos(

3、sinlimxxxfx且0) 1 (f联想到凑导数的定义式220) 1cossin1 (limxxxfx1cossin2xx1cossin2xx) 1 (f) 1 (f )211 ( ) 1 (21f 机动 目录 上页 下页 返回 结束 例例3.3.设)(xf在2x处连续,且, 32)(lim2xxfx求. )2(f 解解:)2(f)(lim2xfx)2()()2(lim2xxfxx02)2()(lim)2(2xfxffx2)(lim2xxfx3思考思考 : P124 题2机动 目录 上页 下页 返回 结束 例例4.4.设1lim)() 1() 1(2xnxnnebaxexxf试确定常数 a

4、, b 使 f (x) 处处可导,并求. )(xf 解解: :)(xf1x,bxa 1x, ) 1(21ba1x,2x,1时x;)(axf时,1x.2)(xxf) 1 ()1 ()1 (fff) 1 () 1 (ff得处可导,在利用1)(xxf即ba1) 1(21ba2a机动 目录 上页 下页 返回 结束 , 1,2ba2) 1 ( f1,21,2)(xxxxf)(xf 是否为连续函数 ?判别判别:机动 目录 上页 下页 返回 结束 )(xf1x,bxa 1x, ) 1(21ba1x,2x,1时x,)(axf时,1xxxf2)()(xf设0)(,xxf在讨论解解:)(lim0 xfx又xfxf

5、x)0()(lim0例例5.所以 )(xf0 x在处连续. 即)(xf0 x在处可导 .xxx1sinlim20)0(0fxxx1sinlim000,1sin2xxx0,0 x处的连续性及可导性. xxxx120sinlim0)0( f机动 目录 上页 下页 返回 结束 二、二、 导数和微分的求法导数和微分的求法1. 正确使用导数及微分公式和法则 2. 熟练掌握求导方法和技巧(1) 求分段函数的导数注意讨论界点界点处左右导数是否存在和相等(2) 隐函数求导法对数微分法(3) 参数方程求导法极坐标方程求导(4) 复合函数求导法(可利用微分形式不变性)转化转化(5) 高阶导数的求法逐次求导归纳 ;

6、间接求导法;利用莱布尼兹公式.机动 目录 上页 下页 返回 结束 例例6.6.设, )(arctansin1sinxxxfeey其中)(xf可微 ,.y求解解:yd)d(sinsin xxee)d(sinsinxxee)d(arctan)(arctan11xxf )d(sinsinsinxeexx)d(cossinxxxeee)d(11)(arctan1112xxxfxexexxd) sin(cossinxfxxd)(arctan1112xyyddxxee cos机动 目录 上页 下页 返回 结束 例例7.7.,有定义时设)(0 xgx 且)(xg 存在, 问怎样选择cba,可使下述函数在0

7、x处有二阶导数.)(xf解解: 由题设)0(f 存在, 因此1) 利用)(xf在0 x连续, 即, )0()0()0(fff得)0(gc 2) 利用, )0()0(ff0)0()(lim)0(0 xgxgfx)0( g0)0()(lim)0(20 xgcbxxafxb而)0( gb得0,2xcbxax0, )(xxg机动 目录 上页 下页 返回 结束 )0( gb3) 利用, )0()0( ff0)0()(lim)0(0 xgxgfx)0( g0)2(lim)0(0 xbbxafxa2而得)0(21 ga)0(gc )(xf0,2xcbxax0, )(xxg机动 目录 上页 下页 返回 结束

8、例例8.8.设由方程) 10(1sin 222yytttx确定函数, )(xyy 求.dd22xy解解: :方程组两边对 t 求导,得txddt 2txddyttycos12dd故xydd)cos1)(1(ytt22 ttyddycostydd0) 1(2ttyddtxdd机动 目录 上页 下页 返回 结束 22ddxy)(ddddxyttxdd )()cos1)(1(ddyttt) 1(2t yttysin) 1()cos1 (23)cos1 () 1(2yttydd yttysin) 1(2)cos1 (2233)cos1 () 1(2yt机动 目录 上页 下页 返回 结束 作业作业 P124 4 ; 5(1) ; 6 ; 7 (3) , (4) , (5) ; 8 (2) ; 10 ; 11 (2) ; 12 ; 13 ; 15机动 目录 上页 下页 返回 结束

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|