ImageVerifierCode 换一换
格式:PPS , 页数:18 ,大小:462.50KB ,
文档编号:2063651      下载积分:6 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2063651.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(罗嗣辉)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(数字图像处理课件:第03章 图像变换.pps)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

数字图像处理课件:第03章 图像变换.pps

1、第三章讲解内容 1. 图像变换的目的、要求和应用 2. 傅立叶级数、 频谱分析概念及其意义 3.一维、二维连续、离散傅立叶变换定义、 性质及其应用目的 1. 熟悉二维傅立叶变换定义、性质及其应用; 2. 掌握一维傅立叶变换算法及频谱分析方法第三章第三章 图像变换图像变换图像变换的目的在于:使图像处理问题简化;有利于图像特征提取;有助于从概念上增强对图像信息的理解。图像变换通常是一种二维正交变换。一般要求: 正交变换必须是可逆的; 正变换和反变换的算法不能太复杂; 正交变换的特点是在变换域中图像能量将集中分布在低频率成分上,边缘、线状信息反映在高频率成分上,有利于图像处理。因此正交变换广泛应用在

2、图像增强、图像恢复、特征提取、图像压缩编码和形状分析等方面。在此讨论常用的傅立叶变换 。3.23.2傅立叶变换傅立叶变换 在学习傅立叶级数的时候,一个周期为T的函数f(t)在-T/2,T/2上满足狄利克雷(Dirichlet)条件,则在-T/2,T/2可以展成傅立叶级数其复数形式为 其中 可见,傅立叶级数清楚地表明了信号由哪些频率分量组成及其所占的比重,从而有利于对信号进行分析与处理。 )sincos(2)(10nwtbnwtaatfnnnTnjnwtnTectf)(22)(1TTdtetfTcjnwtTn 3.2.1 连续函数的傅立叶变换 1. 一维连续函数的傅立叶变换一维连续函数的傅立叶变

3、换 令f(x)为实变量x的连续函数,f(x) 的傅立叶变换用F(u)表示,则定义式为 若已知F(u),则傅立叶反变换为 式(3.2-1)和(3.2-2)称为傅立叶变换对。) 12 . 3()()(2dxexfuFuxj)22 . 3()()(2dueuFxfuxj这里f(x)是实函数,它的傅立叶变换F(u)通常是复函数。F(u)的实部、虚部、振幅、能量和相位分别表示如下: 32 . 3)2cos()()(dxuxxfuR实部) 42 . 3 ()2sin()()(dxuxxfuI虚部)52 . 3()(2)(2)(21uIuRuF振幅) 62 . 3 ()()()()(222uIuRuFuE能

4、量)72 . 3()()(tan)(1uRuIu相位) 82 . 3(2sin2cos2uxjuxeuxj傅立叶变换中出现的变量u 通常称为频率变量。 2. 2. 二维连续函数的傅立叶变换二维连续函数的傅立叶变换 傅立叶变换很容易推广到二维的情况。如果f(x,y)是连续和可积的,且F(u,v)是可积的,则二维傅立叶变换对为 )102 . 3(),(),()92 . 3(),(),()(2)(2dudvevuFyxfdxdyeyxfvuFvyuxjvyuxj二维函数的傅立叶谱、相位和能量谱分别为 |F(u,v) =R2(u,v)+I2 (u,v)1/2 (3.211) (u,v)=tan-1 I

5、(u,v)R(u,v) (3.212) E(u,v)=R2(u,v)+I2(u,v) (3.213) 3.2.2 离散函数的傅立叶变换1.1.一维离散函数的傅立叶变换一维离散函数的傅立叶变换 假定取间隔x单位的抽样方法将一个连续函数f(x)离散化为一个序列f(x0),f(x0+x),fx0+(N-1)x,如图3.2.3所示。 将序列表示成 f(x)=f(x0+xx) (3.216)即用序列f(0),f(1),f(2),f(N-1)代替f(x0),f(x0+x),fx0+(N-1)x。被抽样函数的离散傅立叶变换定义式为 F(u)=式中u=0,1,2,N1。反变换为 f(x)=式中x=0,1,2,

6、N-1。10/21)(NxNuxjNexf10/2)(NxNuxjeuF 例如:对一维信号f(x)=1 0 1 0进行傅立叶变换。 由得 u=0时, u=1时,10/21)()(NxNuxjNexfuF2/ 1) 3 () 2 () 1 () 0 ( 1111 )()() 0 (413041304/ 0241ffffxfexfFxxx0) 3 () 2 () 1 () 0 (11 )() 1 (412/3041ffffjjexfFjx2/1)3()2() 1 ()0( 1111 )()2(413041ffffexfFjxu=2时,u=3时,在N=4时,傅立叶变换以矩阵形式表示为F(u)= =A

7、f(x)0) 3()2() 1 ()0(11 )() 3(412/33041ffffjjexfFxjxxy1-1j-j010111111111111141jjjj2.2.二维离散函数的傅立叶变换二维离散函数的傅立叶变换在二维离散的情况下,傅立叶变换对表示为 F(u,v)= (3.220)式中u=0,1,2,M-1;v=0,1,2,N-1。 f(x,y)= (3.221) 式中 x=0,1,2,M-1;y=0,1,2,N-1。一维和二维离散函数的傅立叶谱、相位和能量谱也分别由前面式子给出,唯一的差别在于独立变量是离散的。一般来说,对一幅图像进行傅立叶变换运算量很大,不直接利用以上公式计算。现在都

8、采用傅立叶变换快速算法,这样可大大减少计算量。为提高傅立叶变换算法的速度,从软件角度来讲,要不断改进算法;另一种途径为硬件化,它不但体积小且速度快。 1010)/(21),(MxNyNvyMuxjMNeyxf 1010)/(2),(MuNvNvyMuxjevuF原图离散傅立叶变换后的频域图例如例如 数字图像的傅立叶变换数字图像的傅立叶变换3.2.33.2.3二维离散傅立叶变换的若干性质 离散傅立叶变换建立了函数在空间域与频率域之间的转换关系。在数字图像处理中,经常要利用这种转换关系及其转换规律,因此,下面将介绍离散傅立叶变换的若干重要性质。 1周期性和共轭对称性 若离散的傅立叶变换和它的反变换

9、周期为N,则有 F(u,v)=F(u+N,v)=F(u,v+N)=F(u+N,v+N) (3.2-26)傅立叶变换存在共轭对称性 F(u,v)=F*(-u,-v) (3.227) 这种周期性和共轭对称性对图像的频谱分析和显示带来很大益处。 2.2.分离性分离性 一个二维傅立叶变换可由连续两次一维傅立叶变换来实现。 例如式(3.2-14)可分成下面两式:10)292 . 3(1.10/2exp),(1),(NyNvNvyjyxfNvxF,10302 . 31,.,1 , 0,/2exp),(1),(NxNvuNuxjvxFNvuF)(xyxvxv,F u v1-D离散傅立叶变换4.4.旋转性质旋转性质 平面直角坐标改写成极坐标形式:平面直角坐标改写成极坐标形式: sincosryrxsincosvu 做代换有:做代换有: ,Frfyxf 如果如果 被旋转被旋转 , ,则则 被旋转同一角度。即有傅立叶变换被旋转同一角度。即有傅立叶变换对:对:yxf,0,F u v00,Frf7.7.卷积定理卷积定理

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|