1、弯曲的概念:弯曲的概念:受力特点受力特点作用于杆件上的作用于杆件上的外力外力都都垂直垂直于杆的于杆的轴线轴线。变形特点变形特点杆轴线由杆轴线由直线直线变为一条平面的变为一条平面的曲线曲线。 主要产生弯曲变形的杆主要产生弯曲变形的杆- - 梁梁。三、平面弯曲的概念:三、平面弯曲的概念:qPMARBN受力特点受力特点作用于杆件上的外力都垂直于杆的轴线,且都在作用于杆件上的外力都垂直于杆的轴线,且都在 梁的纵向对称平面内(通过或平行形心主轴上且过梁的纵向对称平面内(通过或平行形心主轴上且过 弯曲中心)弯曲中心)。变形特点变形特点杆的轴线在梁的纵向对称面内由直线变为一条平杆的轴线在梁的纵向对称面内由直
2、线变为一条平 面曲线。面曲线。纵向对称面纵向对称面MF1F2q平面弯曲平面弯曲简支梁简支梁外伸梁外伸梁悬臂梁悬臂梁FAxFAyFByFAxFAyFByFAxFAyMA静定梁的基本形式静定梁的基本形式受弯杆件的简化受弯杆件的简化ABFFAYFAXFBYmmx求内力求内力FsMMFs 弯曲构件内力:弯曲构件内力:剪力,剪力,弯矩。弯矩。FAYACFBYFClalFFFAY)( s , 0yF. 0sAYFFxlalFxFMAY)( , 0CM. 0 xFMAY研究对象:研究对象:m - m 截面的左段:截面的左段:若研究对象取若研究对象取m - m 截面的右段:截面的右段: , 0yF. 0BYs
3、FFF , 0CM. 0)()(MxaFxlFBY,)(lalFFsxlalFM)( sFMFAyFNFSMFByFNFSM 截面上的剪力对所选梁段上截面上的剪力对所选梁段上任意一点的矩任意一点的矩为为顺时针顺时针转向时,转向时,剪力为正;剪力为正;反之反之为负。为负。+_弯曲内力的正负号规定弯曲内力的正负号规定: : 剪力剪力:左上右下:左上右下为正;为正;反之反之为负为负M(+)M(+)M()M() 截面上的弯矩使得梁呈截面上的弯矩使得梁呈凹形凹形为为正;正;反之反之为负。为负。 左顺右逆左顺右逆为正;为正;反之反之为负为负FAyFNFSMFByFNFSMFAyFBy3FFBy35FFAy
4、 截面上的剪力等于截截面上的剪力等于截面任一侧外力的代数和。面任一侧外力的代数和。FAyFSE35FFSE2FFSEF23FFAyFBy3FFBy35FFAy截面上的弯矩等于截面任一侧截面上的弯矩等于截面任一侧外力对外力对截面形心截面形心力矩的代力矩的代数和。数和。MEFAy2335aFME22aF Fa232FME剪力、弯矩与分布荷载间的关系及应用剪力、弯矩与分布荷载间的关系及应用一、一、 剪力、弯矩与分布荷载间的关系剪力、弯矩与分布荷载间的关系1 1、支反力:、支反力:2qlFFBYAYLqFAyFBy2 2、内力方程、内力方程qxqlxFs21)()0(lx 22121)(qxqlxxM
5、)0(lx 3 3、讨论如下、讨论如下qxqldxxdM21)(qdxxdFs)(x),(xFs)(xqsFMARA对对dx 段进行平衡分析,有:段进行平衡分析,有:0)(d)(d)()(0 xFxFxxqxFFsssy)(dd)(sxFxxqdxxq(x)q(x)M(x)+d M(x)Fs(x)+dFs (x)Fs(x)M(x)dxAy xqxxFdds 剪力图上某点处的切线剪力图上某点处的切线斜率等于该点处荷载集度的大斜率等于该点处荷载集度的大小。小。 控制面控制面: :端点、分段点(外力变化点)和驻点(极值点)等端点、分段点(外力变化点)和驻点(极值点)等。三、简易法作内力图:三、简易法
6、作内力图: 利用微分关系定形,利用特殊点的内力值来定值利用微分关系定形,利用特殊点的内力值来定值 利用积分关系定值利用积分关系定值 基本步骤:1 1、确定梁上所有外力(求支座反力);确定梁上所有外力(求支座反力); 2 2、确定控制面确定控制面,分段,分段。 3 3、建立坐标系,确定控制面内力的数值大小及正负;、建立坐标系,确定控制面内力的数值大小及正负; 将控制面上的剪力和弯矩值标在相应的坐标系中将控制面上的剪力和弯矩值标在相应的坐标系中; 4 4、利用微分规律判断梁各段内力图的形状;、利用微分规律判断梁各段内力图的形状; 5 5、画内力图。、画内力图。12剪力、弯矩与外力间的关系剪力、弯矩
7、与外力间的关系外力外力无外力段无外力段均布载荷段均布载荷段集中力集中力集中力偶集中力偶q=0q0q0QQ 0时,下拉上压;时,下拉上压; 当当M 5 (细长梁)时,纯弯曲正应力公式对于横力弯曲近似成立。弯曲正应力公式弯曲正应力公式ZIMy可推广应用于横力弯曲和小曲率梁1m2mBA截面关于中性轴对称zctWMmaxmaxmax截面关于中性轴不对称(最大拉应力、最大压应力可能发生在不同的截面内)ZmaxmaxmaxIyM横力弯曲梁上的最大正应力横力弯曲梁上的最大正应力横力弯曲正应力公式横力弯曲正应力公式ZIMymaxmaxmaxmaxZZMyMIW横力弯曲最大正应力横力弯曲最大正应力6-3 横力弯
8、曲时的正应力横力弯曲时的正应力细长梁的细长梁的纯弯曲纯弯曲或或横力弯曲横力弯曲横截面惯性积横截面惯性积 I IYZ YZ =0=0弹性变形阶段弹性变形阶段公式适用范围公式适用范围弯曲正应力强度条件弯曲正应力强度条件 ZWmaxmaxmaxmaxzMyMI1.1.等截面梁弯矩最大的截面上等截面梁弯矩最大的截面上2.2.离中性轴最远处离中性轴最远处4.4.脆性材料脆性材料抗拉和抗压性能不同,两方面都要考虑抗拉和抗压性能不同,两方面都要考虑ttmax,ccmax,3.3.变截面梁要综合考虑变截面梁要综合考虑 与与MzI6-3 横力弯曲时的正应力横力弯曲时的正应力BAl = 3mq=60kN/mxC1
9、mMxm67.5kN8/2ql 30zy180120K1.1.C 截面上截面上K点正应力点正应力2.2.C 截面上截面上最大最大正应力正应力3.3.全梁全梁上上最大最大正应力正应力4.4.已知已知E=200GPa,C 截面的曲率半径截面的曲率半径 FSx90kN90kNmkN605 . 0160190CM1. 求支反力求支反力kN90AyFkN90ByF4533Zm10832. 51218. 012. 012bhIMPa7 .61Pa107 .6110832. 510)302180(10606533ZKCKIyM(压应力)(压应力)解:解:例题BAl = 3mq=60kN/mxC1mMxm67
10、.5kN8/2ql 30zy180120K FSx90kN90kN2.2.C C 截面最大正应力截面最大正应力C C 截面弯矩截面弯矩mkN60CMC C 截面惯性矩截面惯性矩45Zm10832. 5IMPa55.92Pa1055.9210832. 510218010606533ZmaxmaxIyMCCBAl = 3mq=60kN/mxC1mMxm67.5kN8/2ql 30zy180120K FSx90kN90kN3. 全梁最大正应力全梁最大正应力最大弯矩最大弯矩mkN5 .67maxM截面惯性矩截面惯性矩45m10832. 5zIMPa17.104Pa1017.10410832. 5102
11、180105 .676533ZmaxmaxmaxIyMBAl = 3mq=60kN/mxC1mMxm67.5kN8/2ql 30zy180120K FSx90kN90kN4. C 截面曲率半径截面曲率半径C 截面弯矩截面弯矩mkN60CMC 截面惯性矩截面惯性矩45Zm10832. 5Im4 .194106010832. 510200359CZCMEIEIM1 zIyMmaxmaxmax分析(分析(1 1)(2 2)弯矩)弯矩 最大的截面最大的截面M(3 3)抗弯截面系数)抗弯截面系数 最最 小的截面小的截面zW 图示为机车轮轴的简图。试校核轮轴的强度。已知图示为机车轮轴的简图。试校核轮轴的强
12、度。已知,kN5 .62,m16. 0,m267. 0,1302Fbammd材料的许用应力材料的许用应力.MPa60mm1601d zWMmaxmax例题(3 3)B B截面,截面,C C截面需校核截面需校核(4 4)强度校核)强度校核B B截面:截面:MPa5 .41Pa105 .4116. 0322675 .62326331maxdFaWMzBBMPa4 .46Pa104 .4613. 0321605 .62326332maxdFbWMzCCC C截面:截面:(5 5)结论)结论 轴满足强度要求轴满足强度要求(1 1)计算简图)计算简图(2 2)绘弯矩图)绘弯矩图F Fa aF Fb b解
13、:解:分析分析(1 1)确定危险截面)确定危险截面(3 3)计算)计算maxM(4 4)计算)计算 ,选择工,选择工 字钢型号字钢型号zW 某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重自重材料的许用应力材料的许用应力MPa,140kN,7 . 61F,kN502F起重量起重量跨度跨度m,5 . 9l试选择工字钢的型号。试选择工字钢的型号。 zWMmaxmax(2 2)例题(4 4)选择工字钢型号)选择工字钢型号(5 5)讨论)讨论(3 3)根据)根据 zWMmaxmax计算计算 33663maxcm962m109621014045 . 9
14、10)507 . 6(MWz (1 1)计算简图)计算简图(2 2)绘弯矩图)绘弯矩图解:解:36c36c工字钢工字钢3cm962zWkg/m6 .67q作弯矩图,寻找需要校核的截面作弯矩图,寻找需要校核的截面 ccttmax,max,要同时满足要同时满足分析:分析: 非对称截面,要寻找中性轴位置非对称截面,要寻找中性轴位置 T T型截面铸铁梁,截面尺寸如图示。型截面铸铁梁,截面尺寸如图示。试校核梁的强度。试校核梁的强度。 MPa,60,MPa30ct例题mm522012020808020120102080cy(2 2)求截面对中性轴)求截面对中性轴z z的惯性矩的惯性矩462323m1064
15、. 728120201212020422080122080zI (1 1)求截面形心)求截面形心z1yz52解:解:(4 4)B B截面校核截面校核 ttMPa2 .27Pa102 .271064. 710521046633max, ccMPa1 .46Pa101 .461064. 710881046633max,(3 3)作弯矩图)作弯矩图kN.m5 .2kN.m4(5 5)C C截面要不要校核?截面要不要校核? ttMPa8 .28Pa108 .281064. 71088105 . 26633max,(4 4)B B截面校核截面校核(3 3)作弯矩图)作弯矩图 ttMPa2 .27max, ccMPa1 .46max,kN.m5 .2kN.m4梁满足强度要求梁满足强度要求例:例:求图示悬臂梁的最大、压应力。已知:,/6,1mkNqml10槽钢槽钢q解:解:1)画弯矩图)画弯矩图kNmqlM35 . 0|2max2)查型钢表:)查型钢表:cmycmIcmbz52. 1,6 .25,8 . 414cmy28. 352. 18 . 423)求应力)求应力:1maxyIMzt6106 .2552. 13000MPa1782maxyIMzc6106 .2528. 33000MPa384MPaMPact384,178maxmaxbz1yy2ycmaxtmaxbz1yy2yM
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。