1、1、和差问题【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。已知两数的和与差,求这两个数。例:已知两数和是10,差是2,求这两个数。按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=42、差比问题【口诀】我的比你多,倍数是因果。分子实际差,分母倍数差。商是一倍的,乘以各自的倍数,两数便可求得。例:甲数比乙数大12且甲:乙=7:4,求两数。先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。3、年龄问题【口诀】岁差不会变,同时相加减。岁数一改变,倍数也改变。抓住这三点,一切都简单。例1:小军今年8 岁,爸爸今年34岁
2、,几年后,爸爸的年龄是小军的3倍?分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。已知差及倍数,转化为差比问题。26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。几年后岁数和是40,岁数差是4,转化为和差问题。则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。4、 和比问题【口诀】家要众人合,分家有原则。分母比数和,分子自己的
3、。和乘以比例,就是该得的。已知整体,求部分。例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=125、鸡兔同笼问题【口诀】假设全是鸡,假设全是兔。多了几只脚,少了几只足?除以脚的差,便是鸡兔数。例:鸡免同笼,有头36 ,有脚120,求鸡兔数。求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=126、 路程问题 【口诀】相遇那一
4、刻,路程全走过。除以速度和,就把时间得。(1)相遇问题例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过,即甲乙走过的路程和恰好是两地的距离120千米。除以速度和,就把时间得,即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)【口诀】慢鸟要先飞,快的随后追。先走的路程,除以速度差,时间就求对。(2)追及问题例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先走的路程:3X2=6(千米)速度的差:
5、6-3=3(千米/小时)追上的时间:6/3=2(小时)7、 浓度问题【口诀】加水先求糖,糖完求糖水。糖水减糖水,便是加水量。(1)加水稀释例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)8、 【口诀】加糖先求水,水完求糖水。糖水减糖水,求出便解题。(2)加糖浓化例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水
6、,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量再减去原来的糖水量,21.25-20=1.25(千克)8、工程问题【口诀】工程总量设为1,1除以时间就是工作效率。单独做时工作效率是自己的,一齐做时工作效率是众人的效率和。例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?1减去已经做的便是没有做的,没有做的除以工作效率就是结果。1-(1/6+1/4)X2/(1/6)=1(天)9、植树问题【口诀】植树多少棵,要问路如何?直的减去1,圆的是结果。例1:在一条长为120米的马路上植树,间距为4米,植树多少棵
7、?路是直的,则植树为120/4-1=29(棵)。例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少棵?路是圆的,则植树为120/4=30(棵)10、 盈亏问题【口诀】全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。除以分配的差,结果就是分配的东西或者是人。例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?全盈问题,则大的减去小的,即公式为:(680-200)/(50-45)=96(人
8、),相应的子弹为96X50+200=5000(发)。例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?全亏问题,则大的减去小,即公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)11.余数问题【口诀】余数有(N-1)个,最小的是1,最大的是(N-1)。周期性变化时,不要看商,只要看余。分析:分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔
9、了2小时。即时针相当于是18-2=16(点)12.牛吃草问题【口诀】每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。原有的草量依此反推。公式:A头B天的吃草量减去B天乘以草的生长速率。未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知。例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天),则草的生长速率是45/3=15(牛/天);原有的草量依此反推公式:A头B天的吃草量减去B天乘以草的生长速率。原有的草量=27X6-6X15=72(牛/天)。将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率,这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。