ImageVerifierCode 换一换
格式:PPT , 页数:85 ,大小:1.04MB ,
文档编号:2262146      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2262146.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第四讲-确定性分析课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第四讲-确定性分析课件.ppt

1、第四讲非平稳序列的确定性分析内容 结构v确定性因素分解v趋势分析v季节效应分析v综合分析时间序列的因素分解长期趋势波动季节性变化随机波动其他因素的综合影响。确定性因素分解长期趋势是指由于某种根本性原因的影响,在一段较长的时间内,使序列呈现逐渐增加或减少的变化。 季节性变化因素是指由于自然条件,社会条件的影响,客观现象在一年内随着季节的变化而产生的周期性变化,这种变化是年复一年重复出现随机性因素分解v随机波动(不规则变动)因素是指一种无规则的变化。它是由影响时间序列短期的,不可预见的和不重复出现的因素引起的。确定性时序分析的目的v克服其它因素的影响,单纯测度出某一个确定性因素对序列的影响v推断出

2、各种确定性因素彼此之间的相互作用关系及它们对序列的综合影响各因素之间关系的常用模型 若以 分别表示时间序列的长期趋势波动、季节性变动、不规则变动则实际观测值与它们之间的关系常用模型有 加法模型乘法模型混合模型ttttISTxttttISTx)()ttttttttITSxbITSxatttIST,加法模型与乘法模型不同点 加法模型是假设季节变动和循环变动与趋势变动无关即季节变动并不随着时间的推移而增大或减小。而乘法模型是假设季节变动和循环变动与趋势变动有关,即季节变动随着时间的推移而增大或减小。趋势分析v在实际应用中,常常是根据时间序列寻找其长期趋势及季节变动然后建立适当的预测模型,再通过模型分

3、析,对现象的未来作出预测。这一节将介绍如何依据时间序列确定其长期趋势、如何得到长期趋势棋型、如何依据模型对现象的未来作出中、长期预测以及如何评价预测的给果。关于带有明显季节性变动的时间序列的预例方法将在下一节介绍。 v趋势分析目的有些时间序列具有非常显著的趋势,我们分析的目的就是要找到序列中的这种趋势,并利用这种趋势对序列的发展作出合理的预测 v常用方法趋势拟合法平滑法趋势拟合法v趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法 v趋势拟合法常用的模型线性趋势模型可线性化的曲线趋势拟模型不可线性化的曲线趋势拟模型(一)线性趋势模型v使用场合长期趋

4、势呈现出线形特征v模型结构式中 就是消除随机波动的影响之后该序列的长期趋势。)(, 0)(ttttIVarIEIbtaxbtaTt(二)可线性化的曲线趋势拟模型v 可线性化的曲线趋势模型是指时间序列随着时间的推移呈现曲线变动趋势,但在估计这些趋势方程时,可以把它们转化成线性关系利用估计线性趋势模型的方法估计其参数。最常用的可线性化的曲线趋势模型有v二次曲线模型v指数曲线模型v对数曲线模型2tbtaTtttabT bIntaTt二次曲线模型v二次曲线趋势模型:v二次曲线趋势模型的线性形式:其中:2tbtaTt2tbtaTt22tt 指数曲线模型v指数曲线趋势模型:v指数曲线趋势模型的线性形式:其

5、中ttabT tbaTtInbbInaaInTTtt,对数曲线模型v对数曲线趋势模型:v对数曲线趋势模型的线性形式:其中bIntaTttbaTtIntt (三)不可线性化的曲线趋势模型常用的不可线性化的曲线趋势模型有:v修正指数模型v龚铂兹趋势模型v皮尔曲线模型ttbcaTtbcateTttbcaT1龚铂兹趋势模型与皮尔曲线模型v龚铂兹曲线与皮尔曲线的图形很相似,它们都属于生长曲线回归预测方法。一般来说,一个产品或一项枝术从投放市场会经历萌芽、畅销、饱和及衰退四个阶段。龚铂兹曲线与皮尔曲线 特别适用于刻画产品的生命周期,所以两模型特别适用于对处在成熟期的商品进行预测以掌握产品的市场需求和销售的

6、饱和量、在实际中很难通过趋势图来判断用以上两个模型中的哪一个。一般情况下,可以把两个模型都估计出来,然后选择预测误差最小的模型。 趋势模型判断的方法 以上列出了一些基本的长期趋势型接下来的问题是我们在实际应用中如何根据实际观测值选择合适的趋势模型。特别当时间序列呈现出曲线趋势时很难做出决断因为曲线趋势模型的种类很多。下面就介绍两种判断模型类型的方法:图形识别法与差分法(一)图形识别法v 图形识别法是通过时间序列的散点图或趋势图来判断趋势。散点图或趋势图是以时间t为横轴,以时问序列中的实际观测值为纵轴的图形根掴此图形观测其变化曲线与各类函数曲线模型的图形进行比较,以便选择较为合适的趋势模型。v

7、这种方法非常简单、直观。但由干许多曲线模型的图形较相似此时通过这种直观的图形识别法就不容易判断、当然,我们可以选几种曲线模型,然后通过计算每一仲的精度指标来确定。(二)差分法v根据序列的差分结果来选择模型:(一)一阶差分相等,选择线性模型(二)二阶差分为常数,选择二次曲线模型(三)一阶差比率为常数,选择指数曲线模型 (四)一阶差分的一阶差比率为常数选择修正指数曲线模型(五)对数一阶差分的一阶比率为常数,选择龚铂兹曲线模型趋势拟合步骤v第一步 确定趋势拟合模型的类型.v第二步 参数估计.v第三步 模型检验与参数检验.v第四步 模型优化.v第五步 利用模型预测线性趋势模型v例1.12 某商场需要预

8、测2001年512月2002年112月的29寸彩电的销售量。所选预测方法为趋势预测法。v具体步骤如下:(一)确定趋势模型的类型 1.图形识别v结合此时间序列的趋势图可以选用线性趋势模型作为预测模型:v用最小二乘法估计参数 btaTt得到线性趋势方程:)月记为年111999(9718. 45015.126tTt案例2 可线性化趋势模型 某电器生产厂家希望预测20002003年的生产量现手头上有该电器生产厂家 1991 1999年的年生产量的数据,如下表4.11(一)确定预测模型1.画电器生产厂家历年生产量的趋势图详见图4.22v 综合趋势图及数据的差分特点,选用二次曲线趋势模型作为预测模型比较好

9、。即设预测模型的数学表达式为;(二)利用最小二乘法得到参数的估计值以及预测模型:2ctbtaTt269048. 047143.1004762. 0ttTt案例3 不可线性化的趋势模型v某公司某产品 19812001年的销售量资料见下表,请根据历史数据建立合适的模型,并对20022005年该公司该产品的销售量进行预侧。 (一)确定摸型v画该公司某产品的销售量的趋势图,趋势图见下图v 从图形上可以看出,该公司某产品的销售量大致呈一条“S”型曲线变动。有三个模型适合刻画这条曲线,它们是修正指数曲线模型、龚琅兹曲线模型及皮儿曲线模型、到底用哪一个曲线模型进行预测,最好把三个模型都估计出来,然后选择估计

10、精度最高的模型。 (三)模型优化平滑法v平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律 v常用平滑方法移动平均法指数平滑法移动平均法v基本思想假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值 模型; (1)1111()ttttt mxxxxxnv案例1.13 根据下表数据,利用简单一次移动平均法对该商场2001年12月份微波炉的销售量进行预测。 预测结果见下表简单一次移动年均预测法的缺点v简单一次移动平均是假设被平均的各期

11、数值对预测值的作用相同但实际中,往往是近期的数值影响较大而远离预测期的数值作用要小一些。v 需要储存较多的数据(至少n期)v 不适用于存在趋势变动及季节变动的预测。简单二次移动平均法v简单二次移动平均预测法,是对一次移动平均值再进行第二次移动平均,并在此基础上建立预测模型,求出预测值。v简单二次移动平均预测法解决了预测值滞后于实际值的矛盾,适用于存在明显线性趋势的时间序列的短期预测。v 预测模型:(2)(1)(1)(1)111()tttt mxxxxn )(122)2()1()2()1(ttttttxxnbxxalbaxttltv例题1.12(续)某商场销售部门经理希望对2001年5一12月份

12、的29寸彩电的销售量作出预测现收集了该商场前28个月度的29寸彩电的销售量资料,详见下表.移动平均期数确定的原则v事件的发展有无周期性以周期长度作为移动平均的间隔长度 ,以消除周期效应的影响v对趋势平滑的要求移动平均的期数越多,拟合趋势越平滑v对趋势反映近期变化敏感程度的要求 移动平均的期数越少,拟合趋势越敏感二次移动平均预测法的优缺点v当时间序列只存在偶然性因素及线性趋势变动时l这种方法不失为一种较好的预测方法但它无法对存在季节变动的时间序列进行预测;另外用此方法迸行预测,必须首先确定移动的长度,移动长度的确定带有主观性,在下面介绍的指数平滑法比其更有效.指数平滑法v指数平滑方法的基本思想在

13、实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。为了更好地反映这种影响作用,我们将考虑到时间间隔对事件发展的影响,各期权重随时间间隔的增大而呈指数衰减。这就是指数平滑法的基本思想 v分类简单指数平滑(适用于无趋势与无季节变动的平稳时间序列的短期预测)线性二次指数平滑(适用于存在线性长期趋势但无明显季节性变动的时间序列的短期预测。)Holt两参数指数平滑(适用于存在线性长期趋势但无明显季节性变动的时间序列的短期预测)。v 指数平滑法是用过去时间序列的加权平均数作为预测值,它是加权移动平均法的一种特殊形式这种方法克服了移动平均法的缺点

14、,因为: 其一指数平滑法只需确定一个权数,即最近时期观测值的权数,其他时期数据的权数可以自动推算出来,而且观测值离预测时期越远时,其权数也变得越小; 其二要储存的数据很少,只需要前一期的实际观测值及前一期的预测值。简单指数平滑v基本公式v等价公式221)1 ()1 (ttttxxxx1)1 (tttxxx简单指数平滑预测法的缺点v第一简单指数平滑法不适用于带趋势和具有明显季节性变动的时问序列的预测v第二,确定平滑常数及初始值带有一定的主观性。(二)线性二次指数平滑法v 线性二次指数平滑法又称线性双重指数平滑法,它是对一次指数平滑值再进行一次平滑。一次指数平滑法是直接利用一次指数平滑值作为预测值

15、的一种预测方法二次指数平滑法与其不同它是用平滑值对时间序列的线性趋势进行修正。因此,二次指数平滑也被称为线性指数平滑。这里介绍两个线性二次指数平滑预测模型:v布朗单一参数线性指数平滑模型;v霍尔特(HOlt)双参数线性指数平滑模型。布朗单一参数指数平滑v模型)(12)1 ()2()1()2()1()2(1)1()2(ttttttttlttttxxbxxalbaxxxx预测公式:二次指数平滑公式:布朗单一参数线性指数平滑模型缺点v确定平滑系数的方法同确定简单平滑系数一样,其实在简单指数平滑预恻中具有SSE最小的平滑系数并不等于布朗单一参数线性指数平滑中的平滑系数。v 不适应于带季节规律的时间序列

16、的预测。v 不适用于存在曲线趋势时间序列的短期预测。Holt两参数指数平滑v使用场合适用于对含有线性趋势的序列进行修匀 v构造思想假定序列有一个比较固定的线性趋势 两参数修匀rxxtt11111)1 ()()(1 (ttttttttrxxrrxxx初始值的确定v平滑序列的初始值v趋势序列的初始值10 xx nxxrn110Holt两参数指数平滑预测v提前 期预测值TttTtrTxx霍尔特两参数线性指数平滑预测法的优缺点v优点:霍尔特双参数线性指数平滑预测法除了保持了布朗单一参数线性指数平滑预测法的优点,而且比布朗单一参数线性指数平滑预测法具有更大的灵活性它可以通过选取不同的平滑系数以得到较为满

17、意的预测模型。v 缺点:要得到两个最优平滑系数较为困难,不能用于带季节规律的时间序列的预测。 二次移动平均预测法、布朗(Bown)单一参数线性指数平滑预测法与霍尔特(Holt)双参数线性指数平滑预测法预测效果比较v三种方法都适用于对具有线性趋势但无季节规律的时间序列的短期预测,但它们在处理趋势时的方法不尽相同。二次移动平均法是通过两次移动平均布朗(BrOwn)单一参数线性指数平滑法是通过二次指数平滑,而霍尔特双参数线性指数平滑法是直接对趋势进行平滑。一般认为霍尔特两参数线性指数平滑法比前两种方法更具灵活性。因为后者需要确定两个参数这样我们可以用不同的参数对原形时间序列的趋势进行平滑。案例v为了

18、预测中国2002年的餐饮业的零售总额现收集了中同1978一2001年的餐饮业的零售总额数据,见下表季节效应分析v例题 北京某一著名烤鸭店位于商业区,销售额一直不错。为了能把这种势头保持下去,在每一个年末都必须确定下一年的经营目标,为此,该店经理希望能提前预测下一年每月的销售额。该烤鸭店 19992002年的销售额(单位;百万元)见下表 . 从时序图可以明显地看出时序特点为:无趋势但呈明显的季节性变动。 例题 根据资料预测奥克马机床工业公2002年 14季度的销售额。该公司 19952001年的季度销售额的趋势图见如下. 例题 请根据熊猫公司在1992 2001年的季度利润额预测该公司在 200

19、2年14季度的利润额.数据如下 以上时间序列的共同特点是:存在季节性变动。 季节性变动是指由于自然条件、社会条件的影响,客观现象在一年内随着季节的变动而产生的周期性变动。这种变动是年复一年重复出现的。如水果的出口额、冰淇淋的销售量等。当然要观察某一现象的时间序列是否存在季节性变动,首先必需具有记录此现象变动的以月度或以季度为单位的时序数据。 如何对具有季节性变动的现象作出预测,经常采用如下几种模型: (1)无趋势的季节性乘法预测模型; (2)无趋势的季节性加法预测模型; (3)带趋势的季节性加法预测模型; (4)带趋势的季节性乘法预测模型; (一)无趋势的季节性乘法预测模型v乘法预测模型的形式

20、 ttSYY季节指数定义v 季节指数就是用简单平均法计算的周期内各时期季节性影响的相对数 .v 季节指数是指用于表示具有季节性变动的现象年复一年地在每月(季)的变动方向和幅度的百分数、如果某季度的季节指数等于100%,说明这个季度不受季节的影响;如果季节指数大于100%,说明该季属旺季;如果季节指数小于100%说明该季属淡季、如果数据以季度为单位,则季节指数之和应等于400%;如果数据以月度为单位,则季节指数之和应等于 1200,一年的季节指数的平均数等于 100%。季节指数的计算v计算季节指数计算公式: 计算周期内各期平均数 计算总平均数 mknxxniikk,2, 1,1nmxxnimki

21、k11mkxxSkk, 2 , 1,例1.14 以北京市1995年2000年月平均气温序列为例,介绍无趋势季节性乘法预测模型的基本思想和具体操作步骤。 例1.14季节指数的计算例1.14季节指数图综合分析步骤1) 画趋势图判断特点2)求趋势方程3) 计算季节指数4)预测例1.15v对1993年2000年中国社会消费品零售总额序列进行确定性时序分析。(1)绘制时序图(2)选择拟合模型v长期递增趋势和以年为固定周期的季节波动同时作用于该序列,因而尝试使用混合模型(b)拟合该序列的发展)(ttttITSx(3)计算季节指数月份季节指数月份季节指数10.98270.92920.94380.94030.92091.00140.911101.05450.925111.10060.951121.335季节指数图季节调整后的序列图ttttITSx(4)拟合长期趋势tTt93178.20522.1015(5)残差检验ttttITSx(6)短期预测 ( )tt lt lx lST综合分析v 例题 某企业的销售部经理希望能得到该企业 2001年各季节的销售额;现有19952000年季度销售额资料见如下 表。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|