1、22.1.1二次函数第二十二章 二次函数学习目标1.理解掌握二次函数的概念和一般形式.(重点)2.会利用二次函数的概念解决问题.3.会列二次函数表达式解决实际问题.(难点) 雨后天空的彩虹,公园里的喷泉,跳绳等都会形成一条曲线.这些曲线能否用函数关系式表示? 导入新课导入新课情境引入1.什么叫函数? 一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.3.一元二次方程的一般形式是什么? 一般地,形如y=kx+b(k,b是常数,k0)的函数叫做一次函数.当b=0 时,一次函数y=kx就叫做正比例函数.2.
2、什么是一次函数?正比例函数?ax2+bx+c=0 (a0)问题1 正方体六个面是全等的正方形,设正方体棱长为 x,表面积为 y,则 y 关于x 的关系式为 . y=6x2 此式表示了正方体表面积y与正方体棱长x之间的关系,对于x的每一个值,y都有唯一的一个对应值,即y是x的函数.讲授新课讲授新课二次函数的定义一探究归纳问题2 n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?分析:每个球队n要与其他 个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛时同一场比赛,所以比赛的场次数 .n-1112mn n答:21122mnn 此式表示了比赛的场次数m与球队数n之间
3、的关系,对于n的每一个值,m都有唯一的一个对应值,即m是n的函数.问题3 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示? 分析:这种产品的原产量是20件, 一年后的产量是 件,再经过一年后的产量是 件,即两年后的产量y=_.20(1+x) 20(1+x)220(1+x)2答: y=20 x2+40 x+20; 此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有唯一的一个对应值,即y是x的函数.问题1-3中函数关系式有什么共同点?函数都是用自变
4、量的二次整式表示的 y=6x2 想一想21122mnny=20 x2+40 x+20二次函数的定义: 形如y=ax+bx+c(a,b,c是常数,a 0)的函数叫做二次函数.其中x是自变量,a,b,c分别是二次项系数、一次项系数和常数项.温馨提示:(1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a 0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项.归纳总结 例1 下列函数中哪些是二次函数?为什么?(x是自变量) y=ax2+bx+c s=3-2t y=x2 y=x+x+25 y=(x+3)-x21yx=不一定是,缺少a0的条件.不是,右边是
5、分式.不是,x的最高次数是3.y=6x+9典例精析 判断一个函数是不是二次函数,先看原函数和整理化简后的形式再作判断.除此之外,二次函数除有一般形式y=ax2+bx+c(a0)外,还有其特殊形式如y=ax2,y=ax2+bx, y=ax2+c等.方法归纳 想一想:二次函数的一般式y=ax2bxc(a0)与一元二次方程ax2bxc0(a0)有什么联系和区别?联系联系:(1)等式一边都是ax2bxc且a 0;(2)方程ax2bxc=0可以看成是函数y= ax2bxc中y=0时得到的.区别:前者是函数.后者是方程.等式另一边前者是y,后者是0.二次函数定义的应用二 例2 (1)m取什么值时,此函数是
6、正比例函数?(2) m取什么值时,此函数是二次函数?解:(1)由题)由题可知,解得=2 2;m (2)由题)由题可知,解得 m=3. 第(2)问易忽略二次项系数a0这一限制条件,从而得出m=3或-3的错误答案,需要引起同学们的重视.注意273.mymx271,30,mm272,30,mm 1.已知: ,k取什么值时,y是x的二次函数?kxky)2( 解:当 =2且k+20,即k=-2时, y是x的二次函数.k变式训练取值范围是什么?那么是二次函数若函数m,xmxmy4)2()9(. 222解:092mm3取值范围是什么?那么是二次函数若函数m,xmxmymm4)3() 1(.312201212
7、2mmm3mm的 取 值 范 围 是 【解题小结】本题考查正比例函数和二次函数的概念,这类题需紧扣概念的特征进行解题.例3:某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元每提高一个档次,每件利润增加2元,但一天产量减少5件(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1x10),求出y关于x的函数关系式;解:第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天产量减少5件,第x档次,提高了(x1)档,利润增加了2(x1)元y62(x1)955(x1),即y10 x2180 x400(其中x是正
8、整数,且1x10);(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次解:由题意可得 10 x2180 x4001120, 整理得 x218x720, 解得 x16,x212(舍去) 所以,该产品的质量档次为第6档【方法总结】解决此类问题的关键是要吃透题意,确定变量,建立函数模型思考:1.已知二次函数y10 x2180 x400 ,自变量x的取值范围是什么?2.在例3中,所得出y关于x的函数关系式y10 x2180 x400,其自变量x的取值范围与1中相同吗?【总结】二次函数自变量的取值范围一般是全体实数,但是在实际问题中,自变量的取值范围应使实际问题有意义.二次函数的值三
9、例4 一个二次函数 .234(1)21kkykxx(1)求k的值.(2)当x=0.5时,y的值是多少? 解:(1)由题意,得2342,10,kkk 解得=2;k将x=0.5代入函数关系式 . (2)当k=2时,221yxx20.52 0.5 10.25y 此类型题考查二次函数的概念,要抓住二次项系数不为0及自变量指数为2这两个关键条件,求出字母参数的值,得到函数解析式,再用代入法将x的值代入其中,求出y的值.归纳总结当堂练习当堂练习2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( )A . m,n是常数,且m0 B . m,n是常数,且n0C. m,n是常数,且mn D . m,
10、n为任何实数C1.把y=(2-3x)(6+x)变成一般式,二次项为_,一次项系数为_,常数项为 .3下列函数是二次函数的是 ( )Ay2x1 BCy3x21 D2yx211yxC-3x2-16124. 已知函已知函数数 y=3x2m-15 当当m=时,时,y是关于是关于x的一次函数;的一次函数; 当当m=时,时,y是关于是关于x的反比例函数;的反比例函数; 当当m=时,时,y是关于是关于x的二次函数的二次函数 .1 0325.若函数 是二次函数,求:232(4)aayaxa(1)求a的值. (2) 求函数关系式.(3)当x=-2时,y的值是多少? 解:(1)由题意,得2322,40,aaa解得
11、= 1;a (2)当a=-1时,函数关系式为 .22( 14)151yxx (3)将x=-2代入函数关系式中,有 25 ( 2)121.y 6.写出下列各函数关系,并判断它们是什么类型的函数(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系)0(42xxy)0(62aaS)260(1321)26(212xxxxxS7.某商店经销一种销售成本为每千克40元的商品,根据市场分析,若按每千克50元销售,一个月能售出
12、500kg,销售单价每涨1元,月销售量 就减少10kg,针对这种商品的销售情况,请解答下列问题:(1)当销售单价为每千克55元时,计算月销售量和销售利润分别为多少?(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出自变量x的取值范围)元6750,kg450 400001400101050500402xxxxy8.矩形的周长为16cm,它的一边长为x(cm),面积为y(cm2).求(1)y与x之间的函数解析式及自变量x的取值范围;(2)当x=3时矩形的面积.解:(1)y(8x)xx28x (0 x8);(2)当x3时,y328315 cm2 .课堂小结课堂小结二次函数
13、定 义y=ax2+bx+c(a 0,a,b,c是常数)一般形式右边是整式;自变量的指数是2;二次项系数a 0.特殊形式y=ax2;y=ax2+bx;y=ax2+c(a 0,a,b,c是常数).第二十二章 二次函数22.1.2 二次函数y=ax2的图象和性质学习目标1.正确理解抛物线的有关概念.(重点)2.会用描点法画出二次函数y=ax的图象,概括出图象的特点.(难点) 3.掌握形如y=ax的二次函数图象的性质,并会应用.(难点)导入新课导入新课情境引入讲授新课讲授新课二次函数y=ax2的图象一x-3-2-10123y=x2 2例1 画出二次函数y=x2的图象.9410194典例精析1. 列表:
14、在y = x2 中自变量x可以是任意实数,列表表示几组对应值:24-2-4o369xy2. 描点:根据表中x,y的数值在坐标平面中描点(x,y) 3. 连线:如图,再用平滑曲线顺次连接各点,就得到y = x2 的图象-33o369当取更多个点时,函数y=x2的图象如下:xy 二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.这条抛物线关于y轴对称, y轴就是它的对称轴. 对称轴与抛物线的交点叫做抛物线的顶点.练一练:画出函数y=-x2的图象.y24-2-40-3-6-9xx-3-2-10123y=-x2-9 -4 -10-1 -4 -9 根据你以往学习函数图象性质的经验,说
15、说二次函数y=x2的图象有哪些性质,并与同伴交流.xoy=x2议一议1.yx2是一条抛物线;2.图象开口向上;3.图象关于y轴对称;4.顶点( 0 ,0 );5.图象有最低点y说说二次函数y=-x2的图象有哪些性质,与同伴交流.oxyy=-x2 1.y-x2是一条抛物线;2.图象开口向下;3.图象关于y轴对称;4.顶点( 0 ,0 );5.图象有最高点1. 顶点都在原点; 3.当a0时,开口向上; 当a0时,开口向下二次函数y=ax2 的图象性质:知识要点2. 图像关于y轴对称; 观察下列图象,抛物线y=ax2与y=-ax2(a0)的关系是什么?二次项系数互为相反数,开口相反,大小相同,它们关
16、于x轴对称.xyOy=ax2y=-ax2交流讨论二 二次函数y=ax2的性质问题1:观察图形,y随x的变化如何变化?(-2,4)(-1,1)(2,4)(1,1)2yx2yax对于抛物线 y = ax 2 (a0) 当x0时,y随x取值的增大而增大; 当x0时,y随x取值的增大而减小.知识要点(-2,-4)(-1,-1)(2,-4)(1,-1)2yx 2yax 问题2:观察图形,y随x的变化如何变化?对于抛物线 y = ax 2 (a0) 当x0时,y随x取值的增大而减小; 当x0时,a越大,开口越小.练一练:在同一直角坐标系中,画出函数 的图象221,22yx yxx 4 3 2101234x
17、 21.510.500.511.52 -8 -4.5-2 -0.50 -8 -4.5 -2 -0.5 -8 -4.52 0.5084.520.522yx 212yx22246448212yx 22yx 2yx 当a0a0 m2+m=2 解得解得:m1=2, m2=1 由得由得:m1 m=1 此时此时,二次函数为二次函数为: y=2x2.典例精析例例2:已知二次函数y=x2(1)判断点A(2,4)在二次函数图象上吗?(2)请分别写出点A关于x轴的对称点B的坐标,关于y轴的对称点C的坐标,关于原点O的对称点D的坐标;(3)点B、C、D在二次函数y=x2的图象上吗?在二次函数y=x2的图象上吗?典例
18、精析(1)判断点A(2,4)在二次函数图象上吗?解:(1)当x=2时,y=x2=4,所以A(2,4)在二次函数图象上; (2)请分别写出点A关于x轴的对称点B的坐标,关于y轴的对称点C的坐标,关于原点O的对称点D的坐标;(2)点A关于x轴的对称点B的坐标为(2,-4),点A关于y轴的对称点C的坐标为(-2,4),点A关于原点O的对称点D的坐标为(-2,-4);(3)点B、C、D在二次函数y=x2的图象上吗?在二次函数y=x2的图象上吗?当x=2时,y=x2=4,所以C点在二次函数y=x2的图象上;当x=2时,y=x2=4,所以B点在二次函数y=x2的图象上;当x=2时,y=x2=4,所以D点在
19、二次函数y=x2的图象上已知 是二次函数,且当x0时,y随x增大而增大,则k= .24(2)kkykx分析: 是二次函数,即二次项的系数不为0,x的指数等于2.又因当x0时,y随x增大而增大,即说明二次项的系数大于0.因此,24(2)kkykx24220kkk解得 k=22练一练例3. 已知二次函数y2x2.(1)若点(2,y1)与(3,y2)在此二次函数的图象上, 则 y1_ y2;(填“”“”或“”);(2)如图,此二次函数的图象经过点(0,0),长方形ABCD的顶点A、B在x轴上,C、D恰好在二次函数的图象上,B点的横坐标为2,求图中阴影部分的面积之和14.说出下列抛物线的开口方向、对称
20、轴和顶点:23xy 23xy231xy 231xy开口方向 对称轴顶点向上向下向下向上y轴y轴y轴y轴(0,0)(0,0)(0,0)(0,0)O 5.若抛物线y=ax2 (a 0),),过点(-1,2). (1)则a的值是 ; (2)对称轴是 ,开口 . (3)顶点坐标是 ,顶点是抛物线上的最 值 . 抛物线在x轴的 方(除顶点外). (4) 若A(x1,y1),B(x2,y2)在这条抛物线上,且x1x2 6.已知二次函数y=x2,若xm时,y最小值为0,求实数m的取值范围解:二次函数y=x2, 当x=0时,y有最小值,且y最小值=0, 当xm时,y最小值=0, m07.已知:如图,直线y3x
21、4与抛物线yx2交于A、B两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积解:由题意得 解得所以此两函数的交点坐标为A(4,16)和B(1,1)直线y3x4与y轴相交于点C(0,4),即CO4.SACO CO48,SBOC 412,SABOSACOSBOC10.234, yxyx4,1,16,1,xxyy 或1212课堂小结课堂小结二次函数y=ax2的图象及性质画法描 点 法以对称轴为中心 对 称 取 点图象抛 物 线轴 对 称 图 形性质重点关注4 个 方 面开口方向及大小对称轴顶 点 坐 标增减性22.1.3二次函数y=a(x-h)2+k的图象和性质第二十二章 二次函数第
22、1课时 二次函数y=ax2+k的图象和性质学习目标1.会画二次函数y=ax2+k的图象.(重点)2.掌握二次函数y=ax2+k的性质并会应用.(难点)3.理解y=ax与 y=ax+k之间的联系.(重点)这个函数的图象是如何画出来的?情境引入xy21840yx 导入新课导入新课二次函数y=ax2+k的图象和性质(a0)一做一做:画出二次函数 y=2x , y=2x2+1 ,y=2x2-1的图象,并考虑它们的开口方向、对称轴和顶点坐标、顶点高低、函数最值、函数增减性.x 1.5 1 0.500.511.5y=2x2+1y=2x24.520.500.524.5y=2x2-13.51-0.51-0.5
23、-13.55.51.531.513 5.5讲授新课讲授新课 22246448y=2x2+1y=2x2y=2x2-1观察上述图象,说说它有哪些特征.探究归纳解:先列表:x 3210123例1 在同一直角坐标系中,画出二次函数 与 的图象212yx2112yx212yx2112yx921122120122923321323112xy-4-3-2-1o1234123456212yx2112yx描点、连线,画出这两个函数的图象观察与思考 抛物线 , 的开口方向、对称轴和顶点各是什么? 212yx2112yx212yx2112yx二次函数开口方向顶点坐标 对称轴向上向上(0,0)(0,1)y轴y轴想一想
24、:通过上述例子,函数y=ax2+k(a0)的性质是什么?y-2-2422-4231xy23121xy23122xyx0二次函数y=ax2+k的图象和性质(a0)二做一做在同一坐标系内画出下列二次函数的图象:根据图象回答下列问题:(1)图象的形状都是 . (2)三条抛物线的开口方向_;(3)对称轴都是_(4) 从上而下顶点坐标分别是 _抛物线向下直线x=0( 0,0)( 0,2)( 0,-2)(5)顶点都是最_点,函数都有最_值,从上而下最大值分别为_、_(6) 函数的增减性都相同: _高大大y=0y= -2y=2对称轴左侧y随x增大而增大对称轴右侧y随x增大而减小二次函数y=ax2+k(a 0
25、)的性质y=ax2+ka0a0开口方向向上向下对称轴y轴y轴顶点坐标(0,k)(0,k)最值当x=0时,y最小值=k当x=0时,y最大值=k增减性当x0时,y随x的增大而减小;x0时,y随x的增大而增大.当x0时,y随x的增大而减小;x0时,y随x的增大而增大.知识要点例2:已知二次函数yax2+c,当x取x1,x2(x1x2)时,函数值相等,则当xx1+x2时,其函数值为_.解析:由二次函数yax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x20.把x0代入二次函数表达式求出纵坐标为c.c【方法总结】二次函数yax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两
26、点的对应横坐标互为相反数解析式y=2x2y=2x2+1y=2x2-1+1-1点的坐标函数对应值表xy=2x2-1y=2x2y=2x2+14.5-1.53.55.5-1213x2x22x2-1(x, )(x, )(x, )2x2-12x22x2+1从数的角度探究从数的角度探究二次函数y=ax2+k的图象及平移三2x2+142224648102y = 2x21y = 2x21 可以发现,把抛物线y=2x2 向 平移1个单位长度,就得到抛物线 ;把抛物线 y=2x2 向 平移1个单位长度,就得到抛物线 y=2x2-1. 下y=2x2+1上从形的角度探究从形的角度探究二次函数y=ax2+k的图象可以由
27、 y=ax2 的图象平移得到:当k 0 时,向上平移k个单位长度得到.当k 20=01(0,1)(-1,0),(1,0)开口方向向上,对称轴是y轴,顶点坐标(0,-3).6.在同一直角坐标系中,一次函数yaxk和二次函数yax2k的图象大致为()方法总结:熟记一次函数ykxb在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键D能力提升7.对于二次函数y=(m+1)xm2-m+3,当x0时y随x的增大而增大,则m=_.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2) 则a=_.9.抛物线y=ax2+c与x轴交于A(-2,0)B两
28、点,与y轴交于点C(0,-4),则三角形ABC的面积是_.2-28二次函数y=ax2+k(a0)的图象和性质图象性质与y=ax2的关系1.开口方向由a的符号决定;2.k决定顶点位置;3.对称轴是y轴.增减性结合开口方向和对称轴才能确定.平移规律:k正向上;k负向下.课堂小结课堂小结22.1.3二次函数y=a(x-h)2+k的图象和性质第二十二章 二次函数第2课时 二次函数y=a(x-h)2的图象和性质情境引入学习目标1.会画二次函数y=a(x-h)2的图象.(重点)2.掌握二次函数y=a(x-h)2的性质.(难点)3.比较函数y=ax2 与 y=a(x-h)2的联系.导入新课导入新课复习引入a
29、,c的符号a0,c0a0,c0a0a0,c0图象开口方向对称轴顶点坐标函数的增减性最值向上向下y轴(直线x=0)y轴(直线x=0)(0,c)(0,c)当x0时,y随x增大而增大.当x0时,y随x增大而减小.x=0时,y最小值=cx=0时,y最大值=c问题1 说说二次函数y=ax2+c(a0)的图象的特征. 问题2 二次函数 y=ax2+k(a0)与 y=ax2(a 0) 的图象有何关系?答:二次函数y=ax2+k(a 0)的图象可以由y=ax2(a 0) 的图象平移得到: 当k 0 时,向上平移c个单位长度得到. 当k 0,开口向上a0,开口向上;当a0a0开口方向顶点坐标对称轴增减性极值向上
30、向下(h ,k)(h ,k)x=hx=h当xh时,y随着x的增大而增大. 当xh时,y随着x的增大而减小. x=h时,y最小最小=kx=h时,y最大最大=k抛物线y=a(x-h)2+k可以看作是由抛物线y=ax2经过平移得到的.顶点坐标顶点坐标对称轴对称轴最值最值y=-2x2y=-2x2-5y=-2(x+2)2y=-2(x+2)2-4y=(x-4)2+3y=-x2+2xy=3x2+x-6(0,0)y轴0(0,-5)y轴-5(-2,0)直线x=-20(-2,-4)直线x=-2-4(4,3)直线x=43?讲授新课讲授新课二次函数y=ax2+bx+c的图象和性质一探究归纳我们已经知道y=a(x-h)
31、2+k的图象和性质,能否利用这些知识来讨论 的图象和性质?216212yxx问题1 怎样将 化成y=a(x-h)2+k的形式?216212yxx216212yxx配方可得2221(126642)2xx21(1242)2xx2221(126 )6422xx21(6)62x21(6)3.2x想一想:配方的方法及步骤是什么?配方216212xxy你知道是怎样配方的吗? (1)“提”:提出二次项系数;(2)“配”:括号内配成完全平方;(3)“化”:化成顶点式.提示:配方后的表达式通常称为配方式或顶点式.3)6(212xy问题2 你能说出 的对称轴及顶点坐标吗?21(6)32yx答:对称轴是直线x=6,
32、顶点坐标是(6,3).问题3 二次函数 可以看作是由 怎样平移得到的?21(6)32yx212yx答:平移方法1: 先向上平移3个单位,再向右平移6个单位得到的; 平移方法2: 先向右平移6个单位,再向上平移3个单位得到的.问题4 如何画二次函数 的图象?216212yxx9 98 87 76 65 54 43 3x先利用图形的对称性列表21(6)32yx7.553.533.557.5510 xy510然后描点画图,得到图象如右图.O问题5 结合二次函数 的图象,说出其性质.216212yxx510 xy510 x=6当x6时,y随x的增大而增大.O例1 画出函数 的图象,并说明这个函数具有哪
33、些性质. 21522yxx x-2-101234y-6.5-4-2.5-2-2.5-4-6.5解: 函数 通过配方可得 ,先列表:21522yxx 21(1)22yx 典例精析2xy-204-2-4-4-6-8然后描点、连线,得到图象如下图.由图象可知,这个函数具有如下性质:当x1时,函数值y随x的增大而增大;当x1时,函数值y随x的增大而减小;当x=1时,函数取得最大值,最大值y=-2. 求二次函数y=2x2-8x+7图象的对称轴和顶点坐标.2287yxx22(44) 87xx 22(4 )7xx22(2)1.x 因此,二次函数y=2x2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-
34、1).解:练一练将一般式y=ax2+bx+c化成顶点式y=a(x-h)2+k二 我们如何用配方法将一般式y=ax2+bx+c(a0)化成顶点式y=a(x-h)2+k?y=ax+bx+c cababxabxa2222222222bbbaxxcaaacababxa4222归纳总结二次函数y=ax2+bx+c的图象和性质 一般地,二次函数y=ax2+bx+c的可以通过配方化成y=a(x-h)2+k的形式,即2224().24bacbyaxbxca xaa因此,抛物线y=ax2+bx+c 的顶点坐标是:对称轴是:直线24(,).24bacbaa.2bxa (1)(2)xyOxyO如果a0,当x 时,y
35、随x的增大而增大.如果a0,当x 时,y随x的增大而减小.2bxa 2bxa 2ba2ba2ba2ba例2 已知二次函数y=x22bxc,当x1时,y的值随x值的增大而减小,则实数b的取值范围是( ) Ab1 Bb1 Cb1 Db1解析:二次项系数为10,抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x1时,y的值随x值的增大而减小,抛物线y=x22bxc的对称轴应在直线x=1的左侧而抛物线y=x22bxc的对称轴 ,即b1,故选择D .2 ( 1)bxb D填一填顶点坐标顶点坐标对称轴对称轴最值最值y=-x2+2xy=-2x2-1y=9x2+6x-5(1,3)x=1最
36、大值1(0,-1)y轴最大值-1最小值-6( ,-6)13直线x=13二次函数字母系数与图象的关系三合作探究问题1 一次函数y=kx+b的图象如下图所示,请根据一次函数图象的性质填空:xyOy=k1x+b1xyOy=k2x+b2y=k3x+b3k1 _ 0b1 _ 0k2 _ 0b2 _ 0k3 _ 0b3 _ 0 xyO222bxa 112bxa 问题2 二次函数 的图象如下图所示,请根据二次函数的性质填空:2yaxbxca1 _ 0b1_ 0c1_ 0a2_ 0b2_ 0c2_ 0开口向上,a0对称轴在y轴左侧,x0对称轴在y轴右侧,x01102bxa 2202bxa x=0时,y=c.x
37、yO442bxa 332bxa a3_ 0b3_ 0c3_ 0a4_ 0b4_ 0c4_ 0开口向下,a0对称轴是y轴,x=0对称轴在y轴右侧,x011=02bxa 2202bxa x=0时,y=c.二次函数y=ax2+bx+c的图象与a、b、c的关系字母符号图象的特征a0开口_a0开口_b=0对称轴为_轴a、b同号 对称轴在y轴的_侧a、b异号 对称轴在y轴的_侧c=0经过原点c0与y轴交于_半轴c0与y轴交于_半轴向上向下y左右正负例3 已知二次函数yax2bxc的图象如图所示,下列结论:abc0;2ab0;4a2bc0;(ac)2b2. 其中正确的个数是 ()A1B2C3D4D由图象上横
38、坐标为 x2的点在第三象限可得4a2bc0,故正确; 由图象上x1的点在第四象限得abc0,由图象上x1的点在第二象限得出 abc0,则(abc)(abc)0,即(ac)2b20,可得(ac)2b2,故正确【解析】由图象开口向下可得a0,由对称轴在y轴左侧可得b0,由图象与y轴交于正半轴可得 c0,则abc0,故正确;由对称轴x1可得2ab0,故正确;1.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x-10123y51-1-11A.y轴 B.直线x= C. 直线x=2 D.直线x= 则该二次函数图象的对称轴为( )D当堂练习当堂练习5232Oyx1232.已知二次函数y=ax2
39、+bx+c(a0)的图象如图所示,则下列结论:(1)a、b同号;(2)当x=1和x=3时,函数值相等;(3) 4a+b=0;(4)当y=2时,x的值只能取0;其中正确的是 .直线x=1(2)3.如图是二次函数y=ax2+bx+c(a0)图象的一部分,x=-1是对称轴,有下列判断:b-2a=0;4a-2b+cy2.其中正确的是( )23A B C DxyO2x=-1B4.根据公式确定下列二次函数图象的对称轴和顶点坐标:22(1) 21213;(2) 580319;1(3) 22 ;2(4)12.yxxyxxyxxyxx 直线x=33, 5直线x=88, 1直线x=1.2559, 48直线x= 0
40、.519, 24课堂小结课堂小结24(,)24bacbaa2bxa y=ax2+bx+c(a 0)(一般式一般式)(顶点式顶点式)224()24bacbya xaa22.1.4二次函数y=ax2+bx+c的图象和性质第二十二章 二次函数第2课时 用待定系数法求二次函数的解析式 学习目标1.会用待定系数法求二次函数的表达式.(难点)2.会根据待定系数法解决关于二次函数的相关问题.(重点)导入新课导入新课复习引入1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?2.求一次函数表达式的方法是什么?它的一般步骤是什么?2个2个待定系数法(1)设:(表达式)(2)代
41、:(坐标代入)(3)解:方程(组)(4)还原:(写表达式)一般式法二次函数的表达式一探究归纳问题1 (1)二次函数y=ax2+bx+c(a0)中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?3个3个(2)下面是我们用描点法画二次函数的图象所列表格的一部分: x-3-2-1012y010-3-8-15讲授新课讲授新课解: 设这个二次函数的表达式是y=ax2+bx+c,把(-3,0),(-1,0),(0,-3)代入y=ax2+bx+c得选取(-3,0),(-1,0),(0,-3),试求出这个二次函数的表达式. 9a-3b+c=0,a-b+c=0,c=-3,解得a=-1,b=-4,c=-3.
42、所求的二次函数的表达式是y=-x2-4x-3.待定系数法步骤:1.设:(表达式)2.代:(坐标代入)3.解:方程(组)4.还原:(写解析式)这种已知三点求二次函数表达式的方法叫做一般式法.其步骤是:设函数表达式为y=ax2+bx+c;代入后得到一个三元一次方程组;解方程组得到a,b,c的值;把待定系数用数字换掉,写出函数表达式.归纳总结一般式法求二次函数表达式的方法例1 一个二次函数的图象经过 (0, 1)、(2,4)、(3,10)三点,求这个二次函数的表达式.解: 设这个二次函数的表达式是y=ax2+bx+c,由于这个函数经过点(0, 1),可得c=1. 又由于其图象经过(2,4)、(3,1
43、0)两点,可得4a+2b+1=4,9a+3b+1=10,解这个方程组,得3,2a3.2b所求的二次函数的表达式是2331.22yxx顶点法求二次函数的表达式二 选取顶点(-2,1)和点(1,-8),),试求出这个二次函数的表达式.解:设这个二次函数的表达式是y=a(x-h)2+k,把顶点(-2,1)代入y=a(x-h)2+k得 y=a(x+2)2+1, 再把点(1,-8)代入上式得 a(1+2)2+1=-8, 解得 a=-1.所求的二次函数的表达式是y=-(x+2)2+1或y=-x2-4x-3.归纳总结顶点法求二次函数的方法这种知道抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤是:设函数表
44、达式是y=a(x-h)2+k;先代入顶点坐标,得到关于a的一元一次方程;将另一点的坐标代入原方程求出a值;a用数值换掉,写出函数表达式.例2 一个二次函数的图象经点 (0, 1),它的顶点坐标为(8,9),求这个二次函数的表达式.解: 因为这个二次函数的图象的顶点坐标为(8,9),因此,可以设函数表达式为 y=a(x-8)2+9.又由于它的图象经过点(0 ,1),可得 0=a(0-8)2+9. 解得 9.64a 所求的二次函数的解析式是29(8)9.64yx 解:(-3,0)()(-1,0)是抛物线y=ax2+bx+c与x轴的交点.所以可设这个二次函数的表达式是y=a(x-x1)(x-x2).
45、(其中x1、x2为交点的横坐标.因此得 y=a(x+3)(x+1).再把点(0,-3)代入上式得a(0+3)(0+1)=-3, 解得a=-1,所求的二次函数的表达式是y=-(x+3)(x+1),即即y=-x2-4x-3.选取(-3,0),(-1,0),(0,-3),试出这个二次函数的表达式. 交点法求二次函数的表达式三xyO1 2-1-2-3-4-1-2-3-4-512归纳总结交点法求二次函数表达式的方法 这种知道抛物线与x轴的交点,求表达式的方法叫做交点法.其步骤是:设函数表达式是y=a(x-x1)(x-x2);先把两交点的横坐标x1, x2代入到表达式中,得到关于a的一元一次方程;将方程的
46、解代入原方程求出a值;a用数值换掉,写出函数表达式.想一想确定二次函数的这三点应满足什么条件?任意三点不在同一直线上(其中两点的连线可平行于x轴,但不可以平行于y轴.特殊条件的二次函数的表达式四例3.已知二次函数yax2 c的图象经过点(2,3)和(1,3),求这个二次函数的表达式 解:该图象经过点(2,3)和(1,3), 3=4a+c,3=a+c,所求二次函数表达式为 y=2x25.a=2,c=5.解得关于y轴对称已知二次函数yax2 bx的图象经过点(2,8) 和(1,5),求这个二次函数的表达式 解:该图象经过点(-2,8)和(-1,5),做一做图象经过原点8=4a-2b,5=a-b,
47、解得a=-1,b=-6. y=-x2-6x.当堂练习当堂练习1.如图,平面直角坐标系中,函数图象的表达式应是 .234yx= 注 y=ax2与y=ax2+k、y=a(x-h)2、y=a(x-h)2+k一样都是顶点式,只不过前三者是顶点式的特殊形式.注意xyO1 2-1-2-3-4321-13452.过点(2,4),),且当x=1时,y有最值为6,则其表达式是 .顶点坐标是(1,6)y=-2(x-1)2+63.已知二次函数的图象经过点(1,5),(0,4)和(1,1)求这个二次函数的表达式解:设这个二次函数的表达式为yax2bxc依题意得 这个二次函数的表达式为y2x23x4.abc1,c4,a
48、-bc-5,解得b3,c4,a2,4.已知抛物线与x轴相交于点A(1,0),B(1,0),且过点M(0,1),求此函数的表达式解:因为点A(1,0),B(1,0)是图象与x轴的交点,所以设二次函数的表达式为ya(x1)(x1)又因为抛物线过点M(0,1),所以1a(01)(01),解得a1,所以所求抛物线的表达式为y(x1)(x1),即yx21.5.如图,抛物线yx2bxc过点A(4,3),与y轴交于点B,对称轴是x3,请解答下列问题:(1)求抛物线的表达式;解:(1)把点A(4,3)代入yx2bxc得164bc3,c4b19.对称轴是x3, 3,b6,c5,抛物线的表达式是yx26x5;2b
49、(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD8,求BCD的面积(2)CDx轴,点C与点D关于x3对称点C在对称轴左侧,且CD8,点C的横坐标为7,点C的纵坐标为(7)26(7)512.点B的坐标为(0,5),BCD中CD边上的高为1257,BCD的面积 8728.12课堂小结课堂小结已知三点坐标已知顶点坐标或对称轴或最值已知抛物线与x轴的两个交点已知条件所选方法用一般式法:y=ax2+bx+c用顶点法:y=a(x-h)2+k用交点法:y=a(x-x1)(x-x2) (x1,x2为交点的横坐标)待定系数法求二次函数解析式22.2二次函数与一元二次方程第二十二章 二次函
50、数学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点)2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点)3.了解用图象法求一元二次方程的近似根.导入新课导入新课情境引入问题 如图,以40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系: h=20t-5t2,考虑以下问题:讲授新课讲授新课二次函数与一元二次方程的关系一(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?Oht1513当球飞行1s或3s时,它的高度为15m.解:解方程
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。