1、高考解答题专讲高考解答题专讲解析几何解析几何-2-从近五年的高考试题来看,圆锥曲线问题在高考中属于必考内容,并且常常在同一份试卷上多题型考查.对圆锥曲线的考查在解答题部分主要体现以下考法:第一问一般是先求圆锥曲线的方程或离心率等较基础的知识;第二问往往涉及定点、定值、最值、取值范围等探究性问题,解决此类问题的关键是通过联立方程来解决.-3-题型一题型二题型三题型四圆锥曲线中的最值与范围问题圆锥曲线中的最值与范围问题圆锥曲线中的最值与范围问题常常转化为函数与导数或者不等式求最值问题.-4-题型一题型二题型三题型四(1)求直线AP斜率的取值范围;(2)求|PA|PQ|的最大值.-5-题型一题型二题
2、型三题型四所以|PA|PQ|=-(k-1)(k+1)3.令f(k)=-(k-1)(k+1)3,因为f(k)=-(4k-2)(k+1)2,-6-题型一题型二题型三题型四策略技巧1.圆锥曲线中的最值问题的解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.-7-题型一题型二题型三题型四2.圆锥曲线中的取值范围可归为以下五类:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这
3、类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.-8-题型一题型二题型三题型四交于A,B两点,且线段AB的长度为2.(1)求椭圆C的方程;(2)求AOB面积S的最大值.解:(1)设椭圆C的右焦点为(c,0),则由题意得 -9-题型一题型二题型三题型四(2)方法一:因为线段AB的长等于椭圆C短轴的长,所以要使三点A,O,B能构成三角形,直线l不过原点O,则弦AB不能与x轴垂直,故可设直线AB的
4、方程为y=kx+m,(1+2k2)x2+4kmx+2m2-2=0.设A(x1,y1),B(x2,y2),又=16k2m2-4(1+2k2)(2m2-2)0,-10-题型一题型二题型三题型四-11-题型一题型二题型三题型四方法二:因为线段AB的长等于椭圆C短轴的长,所以要使三点A,O,B能构成三角形,直线l不过原点O,则弦AB不能与x轴垂直,故可设直线AB的方程为y=kx+m,消去y,并整理,得(1+2k2)x2+4kmx+2m2-2=0.设A(x1,y1),B(x2,y2),又=16k2m2-4(1+2k2)(2m2-2)0,-12-题型一题型二题型三题型四-13-题型一题型二题型三题型四圆锥
5、曲线中的定点与定值问题圆锥曲线中的定点与定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.-14-题型一题型二题型三题型四(1)当l的斜率是k时,用a,b,k表示出|PA|PB|的值;(2)若直线l,l的倾斜角互补,是否存在实数x0,使 为定值,若存在,求出该定值及x0,若不存在,说明理由.交于A,B两点,过Q(x0,0)(|x0|0),且抛物线C在点P(1,f(1)处的切线斜率为 .直线l与抛物线C交于不同的两点A,B,且直线AP垂直于直线BP.(1)求证:直线l过定点,并求出定点的坐标;-20-题型一题型二题型三
6、题型四-21-题型一题型二题型三题型四-22-题型一题型二题型三题型四-23-题型一题型二题型三题型四圆锥曲线中的探索性问题圆锥曲线中的探索性问题圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.-24-题型一题型二题型三题型四【例3】 已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|PQ|=3,(1)求椭圆的方程;(2)过F2的直线l与椭圆交于不同的两点M,N,则F1MN的内切圆的面积是否存在最大值?若存在,求出这个最
7、大值及此时的直线方程;若不存在,请说明理由.-25-题型一题型二题型三题型四(2)设M(x1,y1),N(x2,y2),不妨设y10,y20,y0,0 x8),若圆心C恰为抛物线y2=2px的焦点,线段l所在的直线恰为抛物线y2=2px的准线.-29-题型一题型二题型三题型四(1)求p的值及线段l所在的直线方程;(2)P为圆C上的任意一点,过点P作圆的切线交抛物线弧E于A,B两点,问是否存在这样的点P,使得弦AB在l上的投影长度与圆C的直径之比为43?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)由圆C的方程为(x-4)2+y2=16知圆心为(4,0), 抛物线y2=16x的准线方程
8、为x=-4,由题意可得直线l:x=-4.-30-题型一题型二题型三题型四(2)假设存在这样的点P,满足条件.设P(x0,y0), -31-题型一题型二题型三题型四圆锥曲线中的证明问题圆锥曲线中的证明问题圆锥曲线中的证明问题类型较多,可以主要涉及证明定点定值问题,中点问题等.-32-题型一题型二题型三题型四【例4】 (2017北京高考)已知抛物线C:y2=2px过点P(1,1).过点 作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.-33-题型一题型二题型三
9、题型四-34-题型一题型二题型三题型四策略技巧圆锥曲线中的证明问题多涉及证明定值,点在定直线上等,有时也涉及一些否定性命题,证明方法一般采用直接法或反证法.-35-题型一题型二题型三题型四(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解:(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.-36-题型一题型二题型三题型四(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知t0,且|t|2,-37-题型一题型二题型三题型四-38-题型一题型二题型三题型四感悟提高1.圆锥曲线中的求轨迹问题一般要注意最后的检验或说明.2.圆锥曲线中的定点或定值问题,要善于从特殊情形中寻求突破口.3.圆锥曲线中的最值或范围问题要善于将所求目标函数化或代数化,还要注意圆锥曲线本身的几何性质对最值的影响.
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。