1、27.3 圆中的计算问题第27章 圆导入新课讲授新课当堂练习课堂小结第1课时 弧长和扇形面积1.理解弧长和扇形面积公式的探求过程.(难点)2.会利用弧长和扇形面积的计算公式进行计算.(重点)学习目标导入新课导入新课情境引入问题1 如图,在运动会的4100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?问题2 怎样来计算弯道的“展直长度”?因为这些弯道的“展直长度”是一样的.甲乙12讲授新课讲授新课与弧长相关的计算一合作探究问题1 半径为R的圆,周长是多少?ORC=2 R问题2 下图中各圆心角所对的弧长分别是圆周长的几分之几?OR180OR90OR45ORn(1) 圆心角
2、是180,占整个周角的 ,因此它所对的弧长是圆周长的_.180360(2) 圆心角是90,占整个周角的 ,因此它所对的弧长是圆周长的_.90360(3) 圆心角是45,占整个周角的 ,因此它所对的弧长是圆周长的_.45360(4) 圆心角是n,占整个周角的 ,因此它所对的弧长是圆周长的_.360n1803609036045360360n 用弧长公式 ,进行计算时,要注意公式中n的意义n表示1圆心角的倍数,它是不带单位的.180n Rl注意算一算 已知弧所对的圆心角为60,半径是4,则弧长为_.432360180nn RlR弧长公式知识要点例1 制造弯形管道时,要先按中心线计算“展直长度”,再下
3、料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)解:由弧长公式,可得弧AB的长100 9005001570 (mm),180l 因此所要求的展直长度l=2700+1570=2970(mm). 答:管道的展直长度为2970mm 典例精析700mm700mmR=900mm(100 ACBDO由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.半径半径OBA圆心角圆心角弧OBA扇形与扇形面积相关的计算二概念学习下列图形是扇形吗?判一判想一想问题1 半径为R的圆,面积是多少?OR2S= R问题2 下图中各扇形面积分别是圆面积的几分之几?OR180OR90OR45ORn(1) 圆心角是
4、180,占整个周角的 ,因此圆心角是180的扇形面积是圆面积的_.180360(2) 圆心角是90,占整个周角的 ,因此圆心角是90的扇形面积是圆面积的_.90360(3) 圆心角是45,占整个周角的 ,因此圆心角是45的扇形面积是圆面积的_.45360(4) 圆心角是n,占整个周角的 ,因此圆心角是n的扇形面积是圆面积的_.360n1803609036045360360n扇形面积公式若设O半径为R,圆心角为n的扇形的面积 公式中n的意义n表示1圆心角的倍数,它是不带单位的;公式要理解记忆(即按照上面推导过程记忆).注意ABO2=360n RS扇形知识要点问题:扇形的弧长公式与面积公式有联系吗
5、? 想一想 扇形的面积公式与什么公式类似? 12SlR扇形11180221802nRRnRSRlR扇形12SahABOO类比学习180n Rl2=360n RS扇形 1.扇形的弧长和面积都由 决定.扇形的半径与扇形的圆心角2.已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积S扇扇= 433.已知扇形的圆心角为120,半径为2,则这个扇形的面积S扇= .24cm3 43 试一试典例精析例2 如图,圆心角为60的扇形的半径为10cm.求这个扇形的面积和周长.(精确到0.01cm2和0.01cm)OR60解:n=60,r=10cm,扇形的面积为=2 +180n rlr26010=360 50=3
6、252.36().cm扇形的周长为2=180n rS6010=20+180 10=20+330.47().cm例3 如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm)(1)O .BAC 讨论:(1)截面上有水部分的面积是指图上哪一部分?阴影部分.O.BACD(2)O.BACD(3)(2)水面高0.3 m是指哪一条线段的长?这条线段应该怎样画出来?线段DC.过点O作OD垂直符号于AB并长交圆O于C.(3)要求图中阴影部分面积,应该怎么办? 阴影部分面积=扇形OAB的面积- OAB的面积解:如图,连接OA,OB,过点O作弦AB
7、的垂线,垂足为D,交AB于点C,连接AC. OC0.6, DC0.3, ODOC- DC0.3, ODDC.又 AD DC,AD是线段OC的垂直平分线,ACAOOC.从而 AOD60, AOB=120.O.BACD(3)有水部分的面积:SS扇形OAB - SOAB2212010.6360210.120.6 3 0.320.22(m )AB ODOBACD(3)OO弓形的面积=扇形的面积三角形的面积弓形面积公式 S弓形=S扇形-S三角形 S弓形=S扇形+S三角形知识要点7733847338 433CA. BC. D.1.已知弧所对的圆周角为90,半径是4,则弧长为 .2.如图,RtABC中,C=
8、90, A=30,BC=2,O、H分别为AB、AC的中点,将ABC顺时针旋转120到A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为 ( )2当堂练习当堂练习ABCOHC1A1H1O13.如图,A、B、 C、 D两两不相交,且半径都是2cm,则图中阴影部分的面积是 .212 cmABCD4.(例题变式题)如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.OABDCE22=24010.60.3 0.6 336020.240.09 30.91 cm.OABSS弓形扇形S解:弧长计算公式:180n Rl扇形定义公式2360n RS扇形12SlR扇形阴影部分面积求法:整体思想弓形公式S弓形=S扇形-S三角形 S弓形=S扇形+S三角形割补法课堂小结课堂小结见本课时练习课后作业课后作业
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。