ImageVerifierCode 换一换
格式:PPTX , 页数:14 ,大小:151.71KB ,
文档编号:2451483      下载积分:18 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2451483.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(微积分无穷级数习题讲解课件.pptx)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

微积分无穷级数习题讲解课件.pptx

1、二、典型例题二、典型例题;)1()1(:11 nnnnnnn判断级数敛散性判断级数敛散性例例1 1解解nnnnnnnnu)1(1 ,)11(21nnnn nnnnnnn122)11(lim)11(lim2 ; 10 exxnnxn11limlim ln1limexpxxx 1limexpxx ; 10 e, 01lim nnu根据级数收敛的必要条件,根据级数收敛的必要条件,原级数发散原级数发散;23cos)2(12 nnnn解解,223cos2nnnnnnu ,2nnnv 令令nnvvnnnnnn221limlim11 nnn21lim , 121 ,21收敛收敛 nnn根据比较判别法,根据比

2、较判别法,原级数收敛原级数收敛 1).0()1()2ln()3(nnanan解解nanunnnnn1)2ln(limlim , )2ln(lim1nnna ,2,2nenn 时时从而有从而有,)2ln(1nnnn , 1lim nnn由于由于, 1)2ln(lim nnn.1limaunnn ,1100时时即即当当 aa原级数收敛;原级数收敛;,1110时时即即当当 aa原级数发散;原级数发散;,1时时当当 a,)11()2ln(1 nnnn原级数为原级数为,)11()2ln(lim nnnn原级数也发散原级数也发散敛?敛?是条件收敛还是绝对收是条件收敛还是绝对收敛?如果收敛,敛?如果收敛,是

3、否收是否收判断级数判断级数 1ln)1(nnnn例例解解,1ln1nnn ,11发散发散而而 nn,ln1ln)1(11发散发散 nnnnnnn即原级数非绝对收敛即原级数非绝对收敛,ln)1(1级数级数是交错是交错 nnnn由莱布尼茨定理:由莱布尼茨定理:xxnnxnlnlimlnlim , 01lim xx, 0ln11limln1lim nnnnnnn),0(ln)( xxxxf),1(011)( xxxf,), 1(上单增上单增在在,ln1单减单减即即xx ,1ln1时单减时单减当当故故 nnn),1()1ln()1(1ln11 nunnnnunn所以此交错级数收敛,所以此交错级数收敛,

4、故原级数是条件收敛故原级数是条件收敛.)1)(1(0敛域及和函数敛域及和函数收收求级数求级数 nnxn例例解解, 1)1)(1(0 Rxnnn敛半径为敛半径为的收的收, 111 x收敛域为收敛域为, 20 x即即则有则有设此级数的和函数为设此级数的和函数为),(xs.)1)(1()(0 nnxnxs两边逐项积分两边逐项积分 011)1(nxnx 011)1)(1()(nxnxdxxndxxs 01)1(nnx)1(11 xx,21xx 求导,得求导,得两边再对两边再对 x)21()( xxxs.)2(12x .1lnarctan)(2克劳林级数克劳林级数展开成麦展开成麦将将xxxxf 例例4

5、4解解,32)1ln(32 xxxx,)1(32)1ln(216422 nxxxxxnn)11( x xdxxx0211arctan又又 xnndxxxxx02642)1(1 12)1(75312753nxxxxxnn)11( x 1210222)1(2112)1(1lnarctannnnnnnnxnxxxx故故 02202222)1(2112)1(nnnnnnnxnx.)22)(12()1(022 nnnnnx)11( x的幂级数的幂级数成成的和函数展开的和函数展开将级数将级数)1()!12(2)1(12111 xnxnnnn例例5 5解解设法用已知展开式来解设法用已知展开式来解的展开式,的展开式,是是分析分析xnxnnnsin)!12()1(1121 112111211)2()!12()1(2)!12(2)1(nnnnnnnxnnx2sin2x 211sin2 x21sin21cos221cos21sin2 xx 01202)21()!12()1(21cos2)21()!2()1(21sin2nnnnnnxnxn 01202)1()!12(2)1(21cos)1()!2(2)1(21sin2nnnnnnnnxnxn),(

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|