ImageVerifierCode 换一换
格式:PPTX , 页数:39 ,大小:2.70MB ,
文档编号:2526787      下载积分:34 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2526787.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(无敌的果实)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(BigDataBench 大数据和AI基准测试程序集.pptx)为本站会员(无敌的果实)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

BigDataBench 大数据和AI基准测试程序集.pptx

1、大数据分析与生态系统论坛BigDataBench: 大数据和AI基准测试程序集大数据和BigDataBench:AI基准测试程序集1. 背景2. 基准测试基本原理3. 基准测试方法学4. 大数据和AI基准测试程序集: BigDataBenchBigDataBench: 大数据和AI基准测试程序集技术变革的基础. Technology. End of Dennard scaling: power becomes the key constraint. Ending of Moores Law: transistors improvement slows. Architectural. Limit

2、ation and inefficiencies in exploiting instruction levelparallelism end the uniprocessor era in 2004. Amdahls Law and its implications end “easy” multicore era. Products. PC/Server IoT, Mobile/CloudA New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design,Enhanced Secur

3、ity, Open Instruction Sets, and Agile Chip Development. John Hennessy and DavidPatterson, Stanford and UC Berkeley. June 4, 2018BigDataBench: 大数据和AI基准测试程序集技术变革的机遇. Software-centric. Modern scripting languages are interpreted,dynamically-typed and encourage reuse. Efficient for programmers but not fo

4、r execution. Hardware-centric. Only path left is Domain Specific Architectures. Just do a few tasks, but extremely well. Combination. Domain Specific Languages & ArchitecturesA New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design,Enhanced Security, Open Instruction S

5、ets, and Agile Chip Development. John Hennessy and DavidPatterson, Stanford and UC Berkeley. June 4, 2018BigDataBench: 大数据和AI基准测试程序集面临的关键问题 Understanding workloads Domain-specific hardware & Software co-design Open-source softwares/ hardwaresA New Golden Age for Computer Architecture: Domain-Specifi

6、c Hardware/Software Co-Design,Enhanced Security, Open Instruction Sets, and Agile Chip Development. John Hennessy and DavidPatterson, Stanford and UC Berkeley. June 4, 2018BigDataBench: 大数据和AI基准测试程序集1. 背景2. 基准测试基本原理3. 基准测试方法学4. 大数据和AI基准测试程序集: BigDataBenchBigDataBench: 大数据和AI基准测试程序集基准测试(Benchmark)“ T

7、he process of running a specificprogram or workload on a specific machineor system and measuring the resultingperformance .”Saavedra, R. H., Smith, A. J.: Analysis of benchmark characteristics andbenchmark performance prediction, ACM Transactions on Computer System,vol. 14, no. 4, (1996) 344-384BigD

8、ataBench: 大数据和AI基准测试程序集基准测试集(Benchmark Suite) A popular measure of performance with avariety of applications To overcome the danger of placing too manyeggs in one basket the weakness of any one benchmark is lessenedby the presence of the other benchmarks characterize the relative performance e.g. EE

9、MBC, SPECBigDataBench: 大数据和AI基准测试程序集基准测试集的构建RelevantGoodBenchmarkPortableScalableSimpleBigDataBench: 大数据和AI基准测试程序集TPC系列基准测试程序集The Transaction Processing Performance Council Domain specific TPC Benchmarks: talked by Charles Levine at 1997 No single metric possible The more general the benchmark, the

10、less useful it is for anythingin par ticular. A benchmark is a distillation of the essential attributes of aworkload Principles Charles Levine: TPC-C: The OLTP Benchmark, Sigmod, 1997 Relevant meaningful within the target domain Simple Good metric(s) linear, orthogonal, monotonic Portable applicable

11、 to a broad spectrum ofhardware/architecture Coverage does not oversimplify the typical environment Acceptance Vendors and Users embrace itBigDataBench: 大数据和AI基准测试程序集SPEC系列基准测试程序集Systems Performance Evaluation Cooperative Principles Application-oriented test “real-life” situations Portability writte

12、n in a platform neutral programminglanguage Repeatable and reliable Consistency and fairness each specification mustdefine clear rules for executing and reporting resultsBigDataBench: 大数据和AI基准测试程序集PARSEC基准测试程序集A parallel benchmark suite for multiprocessors Principles: flexibility and easy to use Aut

13、omatization single, common interface Modularity simply handling Abstraction abstract from details Encapsulation details encapsulated in standardizedconfiguration files Logging logging important information for recreation-CHRISTIAN BIENIA: Benchmarking Modern Multiprocessors, 2011BigDataBench: 大数据和AI

14、基准测试程序集大数据基准测试程序集 Proposed by Big Data BenchmarkingCommunity (http:/clds.sdsc.edu/bdbc) simple to implement and execute Cost effective Timely? not fully understood VerifiableBigDataBench: 大数据和AI基准测试程序集1. 背景2. 基准测试基本原理3. 基准测试方法学4. 大数据和AI基准测试程序集: BigDataBenchBigDataBench: 大数据和AI基准测试程序集基准测试程序的构建方法 Top-

15、down: representative program selection can yield accurate representations of the program space of interest usually impossible to make any form of hard statements about therepresentativeness Bottom-up: diverse range of characteristics program characteristics are quantities that can be measured andcom

16、pared not all portions of the characteristics space are equally important- C. Bienia. Benchmarking modern multiprocessors. PhDthesis, Princeton University, 2011.BigDataBench: 大数据和AI基准测试程序集TPC-C 构建方法学 Functions of Abstraction a mid-weight read-write trans- action (i.e., New-Order) a light-weight read

17、-write transaction (i.e., Payment) a mid-weight read-only transaction (i.e., Order-Status) a batch of mid-weight read-write transactions (i.e., Delivery) a heavy-weight read-only transaction (i.e., Stock-Level) Functional Workload Model captures in an implementation-independent manner the loadthat t

18、he system needs to serviceBigDataBench: 大数据和AI基准测试程序集关系代数的原语抽象 Relational AlgebraS Five primitive androjfundamental operators Theoretical foundationdatabase Strong expression powerUnion Compose complexqueriesfereFrom E. F. Codd, A relational Model of Data for Large shared data banks. Communication o

19、f ACM, vol 13. no.6,1970BigDataBench: 大数据和AI基准测试程序集数据计算的抽象 Seven motifs would be important for thenext decade7“Motifs”Unstru-cturedGridsStructu-redGridsPhillip Colella proposedSimulation in the physicalciences is done out usingvarious combinations ofthe following corealgorithmsFFTParticlesalgebraSpa

20、rselinearalgebraMonteCarlo distinctive combinationof computation and dataaccessFrom P . Colella, “Defining software requirements for scientific computing,” 2004.BigDataBench: 大数据和AI基准测试程序集并行计算的抽象 Landscape of Parallel ComputingRe13 dwarfsUnstru-cturedGridsBacktrackandbranchboundDynamicprogrammingStr

21、uctu-redGridsN-Bodymethod Berkeley research group Define building blocks forcreating libraries & frameworks A pattern of computation andommunicationDenseSpectralmethodCombinationlogiclinearalgebramSparselinearalgebraFinitestatemachineMonteCarloGraphtraversalFrom K. Asanovic, R. Bodik, B. C. Catanzar

22、o, J. J. Gebis, P . Husbands, K. Keutzer, D. A. Patterson, et al, “The landscape of parallelcomputing research: A view from berkeley,” tech. rep., Technical Report UCB/EECS-2006-183, EECS Department, University ofCalifornia, Berkeley, 2006.BigDataBench: 大数据和AI基准测试程序集1. 背景2. 基准测试基本原理3. 基准测试方法学4. 大数据和

23、AI基准测试程序集: BigDataBenchBigDataBench: 大数据和AI基准测试程序集算法分析:SIFT Workloads21BigDataBench: 大数据和AI基准测试程序集算法分析: AlexNet22BigDataBench: 大数据和AI基准测试程序集Data motif Data Motif: abstractions of time-consuming units ofcomputation Eight classes of units of computation The impacts of data type, source, size, patternR

24、un time breakdownA pipeline of units ofcomputationAnalysisStatisticSummarizeInitial or intermediatedata inputsBig Data & AIWanling Gao, Jianfeng Zhan, Lei Wang, et al. Data Motifs: A Lens Towards Fully Understanding Big Dataand AI Workloads. PACT18.BigDataBench: 大数据和AI基准测试程序集Data motif的构建 Data Motif

25、 Big data and AI workloads Units of computation Methodology Algorithmic analysis Profiling analysisBigDataBench: 大数据和AI基准测试程序集Data Motifs抽取方法 40+ algorithms with a broad spectrum Data mining/Machine learning Natural language processing Computer visionOperations DescriptionMatrixMatrix/Vector operati

26、onsSamplingSelecting a subset samples according tocertain statistical population BioinformaticsLogicBit manipulation operationsFFT, DCT, Wavelet transformUnion, intersection, complementTransformSetGraphGraph-theoretical computations, i.e.graph traversalStatisticSortStatistical computationsSorting th

27、e elements in a certain orderBigDataBench: 大数据和AI基准测试程序集Data Motifs: 矩阵计算(Matrix computation) Operations on one/multiple rectangulararrays of numbers or other objects Vector-vector Vector-matrix Matrix-matrixBigDataBench: 大数据和AI基准测试程序集Data Motifs:采样操作( Sampling ) The selection of a subset of origina

28、l data. Random sampling Importance sampling Acceptance sampling Monte Carlo samplingBigDataBench: 大数据和AI基准测试程序集Data Motifs:变换操作(Transform computation) Equation from its original domain intoanother domain. Fourier transform Laplace transformBigDataBench: 大数据和AI基准测试程序集Data Motifs:图计算(Graph computation

29、) Nodes represent entities and edgesrepresent dependencies. Community Detection PageRankBigDataBench: 大数据和AI基准测试程序集Data Motifs:逻辑计算(Logic computation) Bit manipulation AND OR XORBigDataBench: 大数据和AI基准测试程序集Data Motifs:集合操作(Set computation) Operations on one/multiple collection ofdistinct objects Set

30、theory Union Intersection Complement Similarity analysisBigDataBench: 大数据和AI基准测试程序集Data Motifs:排序( Sort ) Sorting algorithm that puts elements of alist in a certain order Top-K Sort Memory sort External sort Sort algorithms QuickSort BubbleSortBigDataBench: 大数据和AI基准测试程序集Data Motifs:统计操作(Basic statis

31、tic computation) Data models and statistics Probability distribution Count statistics Time-series analysisBigDataBench: 大数据和AI基准测试程序集Data Motif 实现 Multiple software stacks Hadoop, Spark, TensorFlow, PthreadsBigDataBench: 大数据和AI基准测试程序集BigDataBench构造方法学 Data motif-based Scalable Methodology Micro Benc

32、hmark-Single data motif Component Benchmark-Data motif combinationwith different weights Application Benchmark-End-to-end applicationmodelBigDataBench: 大数据和AI基准测试程序集BigDataBench 4.0Unified Big Data and AI Benchmark Suite - http:/ BenchmarkComponent Benchmark100X Runtime Speedup90%+ Average AccuracyC

33、rossDataConfigurationAdaptabilityApplication BenchmarkAdaptabilityArchitectureLarge scale system-level benchmarksProxy benchmarks for simulationOfflineAnalyticsOnlineServiceTableTextGraphMatrixSemi-ImageAudioAIGraphDataWarehouseStructuredUn-structuredStreamingNoSQLstructuredReal-world dataset and data generation tools 47 Workloads covering 7 typesMPINoSqlImpalaShark16 Software stackDataMPIHadoop RDMABigDataBench: 大数据和AI基准测试程序集Micro BenchmarksBigDataBench: 大数据和AI基准测试程序集Component Benchmarks谢谢!

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|