ImageVerifierCode 换一换
格式:PPTX , 页数:26 ,大小:2.96MB ,
文档编号:2527734      下载积分:30 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2527734.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(无敌的果实)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(人工智能与运动科技的相关研究与应用.pptx)为本站会员(无敌的果实)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

人工智能与运动科技的相关研究与应用.pptx

1、 1. Limitations of Artificial Intelligence2. Real-World AI Applications of Sport Technology3. Case 1: Visualization and Personalization of Classes4. Case 2: 3D Modeling5. Case 3: Mathematical Training Classes6. Case 4: Content Understanding7. Discussions 1. Everyone is crazy about AI.2. It is valuab

2、le as long as you cansee its pros and cons.3. AlphaGo is with complicatedthinking but simple actions.4. Open domains and closed domains. ( ) ) 1. A massive amount of entertainment without leaving the sofa(Tiktok, Iqiyi, Bilibili)2. Checking in with loved ones without really checking in(Wechat, Weibo

3、)3. Restaurant food delivery (Meituan, Ele.me)4. Online shopping (Taobao, JD)5. No more perusing the bookstore (Dangdang, Amazon)6. News at your fingertips (Toutiao)7. No more getting lost or asking for directions (Baidu, Gaode)8. Gaming in the virtual world (Arena of Valor)https:/ A. Tech for fitne

4、ssB. Tech for healthC. Smart hardware & GargetsKeep Moving! Class Visualization can solve:GodsView1. Class visualization2. Path of Training3. Clustering of classes4. Pattern of users5. User friendlyKnowledgeGraph ofClassesVisualizationRelation Problem 1: Give a training plan like a professionalfitne

5、ss coach.1. For each user group: suitRules, suitDayRules,workoutRules = workout candidate2. Initializing connection probability as equal3. Dynamically adjust the transition probabilitybased on user feedbacks4. Relatively stable system for each groupPersonalized Classes Problem 2: How can we provide

6、users a timely feedback in fitness training?rot 0rot 90Squatrot 90rot 0Walkrot 0Taijirot 90Squat use res50 1. Know better about yourself2. Monitoring your body change3. Avarta of fitness4. Model of Keep Ups5. Entertaining model Effectively measureYou body fat!1. Know your bodytype better.2. More acc

7、uratemeasurement and .If we are asked to identify the relationship between the given two pairs: and then the first relationship can be best attributed as has-type, whereas the second relationship can beattributed as instance-of.So, we can redefine the two pairs as. WALL-E _has_genre ? For the imagef

8、eature extraction,existing works usehand-craft features, off-the-shelf features, orjointly-trained featureswith the model. Deepfeatures have showedeffectiveness inResNet152 layers2015LBP2002SIFT2004HOG2011AlexNet8 layers2012representing thesemantic information ofimages.VGG19 layers2014Network-In-Net

9、work2014GoogleNet22 layers2014- & & Consider the semantic topic or47keyword information. 91950 Ignore the correlations betweentopics or keywords. Similar semantics can be expressed by synonyms or relevant topics.Bag-of-FeaturesBoWTF-IDFTopic ModelLDA Consider the textural sequentialinformation Ignor

10、e the situations that similarsemantics can be expressed indifferent ways with varioussequences.RNN (LSTM/GRU)Word Embedding The structure of theproposed model is adual-path neuralnetwork: i.e., textGraph ConvolutionalNetwork (text GCN)(top) and imageNeural Network(image NN) (bottom). (a) The origina

11、l text andthree kinds of textualrelationships: (b)distributed semanticrelationship in theembed- ding space, (c)word co-occurrencerelationship and (d)general knowledgerelationship defined by aknowledge graph.The semanticillustration of ourproposedframework basedon GCN and CNN.Some samples of text queryresults using four of our modelson the CMPlaces dataset.In the future work, wecan extend this model to othercross-modal areas like auto-matic image captioning and

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|