1、 目目 录录1.xyxe 函函数数的的性性质质和和应应用用;综上可得,综上可得,k的最大值为的最大值为1. .【针对训练1】已知函数( )ln1 ()af xxaRx (1)若函数 f(x) 的最小值为 0 ,求 a 的值;(2)证明不等式:(ln1)sin0 xexx【评析】通常这种题,一定要寻找第一问与第二问之间的联系,这种联系常常成为解题的突破点 xxye 2.2.函函数数的的性性质质与与应应用用(这里是利用图像的直观印象,要给出证明,还需要利用单调性的定义严格证明)结合()和(),有哪些启示?【分析】本题是函数的零点问题,难点是利用函数的单调性与零点存在定理判定零点的个数.我们先来看看
2、标准解答: 1lna13ln(1)a(2017年新课标I卷理21).(2016年新课标I卷文21).如出一辙函数类似问法相同 3.xeyx 函函数数的的性性质质和和应应用用注意f(x)过了定点(1,0),即f(1)=0.1【评析】第三问巧妙地使用了前两问的结论,使得证明的过程得以简化 4.lnyxx 函函数数的的性性质质和和应应用用【解析】()略, a=1,b=2【分析】把 x 乘到括号里去,就会出现 xlnx,利用其最小值再放缩【分析】把 x 乘到括号里去,就会出现 xlnx,利用其最小值再放缩【分析】题目的本意是利用第一问的单调性证明第二问的不等式,而事实上可以利用函数y=xlnx的性质证
3、第二问的不等式,再用这个不等式通过赋值比较第三问中三个数的大小【评析】像这种比较数字大小的题,通常都是在已有的不等式中,恰当地赋值就可以解决 5.lnxyx 函函数数的的性性质质和和应应用用【例题1】(2017年高考新课标理科第11题)【分析】由于x,y,z都在指数位置上,所以宜用取对数的办法将它们从指数位置上放下来【评析】本题在取对数后,也可采取作商比较法解决 ln6.xyx 函函数数的的性性质质和和应应用用3333ee33eee(III)将这6个数按时从小到大的顺序排序,并证明你的结论【分析】只需比较 与 , 与 的大小即可3eee3【分析】第一问,略;第二问,可以考虑分离变量求a的取值范
4、围;第三问,可以考虑借助题干中的不等式证明要求证的不等式2213ln22xxxaxex(2)若对任意的x0,求实数a的取值范围;ln1xxx2213ln22xxxaxex(2)若对任意的x0,求实数a的取值范围;2ln( )1xexxh xex2(1)2xeexexx(3)求证:对任意的x0,都有(,1ae 2213ln22xxxaxex(2)若对任意的x0,求实数a的取值范围;2(1)2xeexexx(3)求证:对任意的x0,都有(,1ae 0 xxeeeexx【评析】证明不等式实质就是应用不等式的传递性,可以采用同向不等式相加(如证法一),也可以层层传递(如证法二),也可以用叠乘等等【分析】(1)略;(2)讨论f(x)的零点个数,可以转化为求 的交点个数ln xax