1、仪表基础知识及维护内容 第一部分:仪表基础知识现场仪表测量参数的分类: 现场仪表测量参数一般分为温度、压力、流量、液位四大参数。 下面就着重介绍一下这四大参数的测量原理,以及测量这四大参数所运用的仪表。1.1、双金属温度计 双金属温度计的测温元件由两种不同膨胀系数彼此牢固结合的金属片制成的。它是一种适合中、低温现场检测的仪表。可直接测量气体或液体的温度。 精度等级较低:1.0、1.5、2.5,主要用于现场指示。 其中电接点双金属温度计是带有报警输出的。 铂电阻是铂丝制成的测温元件。它是利用铂金属的电阻值变化而变化的特性来测量温度的。常用的分度号为PT100。 PT100即表示热电阻在0时的阻值
2、:R为100 PT100的测量范围及精度 测量范围:-200-+850,适用于500 以内温度的测量。 热电偶是利用两种不同材料相接触而产生的热电势随温度变化的特性来测量温度的。由于热电偶具有结构简单、使用方便、测量范围宽、便于远距离传送和集中检测等特点,因而在工业生产中得以广泛使用。热电偶的热电特性由电极材料的化学成分和物理性能所决定,热电势的大小与组成热电偶的材料及两端温度有关,与热电偶的粗细无关。热电偶 用来表达容器内储存物质表面高低位置的参数。A、磁浮子液位计:润滑油箱B、浮筒液位计:容器液位C、差压式液位计:量程大于2米的容器D、雷达液位计:精密测量 导波雷达:介电常数大于1.3的液
3、位测量 是替代浮筒液位计的新型仪表E、射频导纳液位计:界面测量F、浮筒液位计:容器液位G、差压式液位计:量程大于2米的容器H、雷达液位计:精密测量 导波雷达:介电常数大于1.3的液位测量 是替代浮筒液位计的新型仪表I、射频导纳液位计:界面测量 三、压力测量基础知识3.1 压力表 实验室所使用的标准压力表精度较高,而在生产装置中管道上或容器、机泵进出口等设备上作为现场指示的压力表精度都比较低,而这类压力表根据传统习惯归工艺管理,它们包括:全不锈钢压力表、不锈钢耐震压力表、膜片耐震压力表、隔膜压力表、化学密封压力表。对上述所说到的压力表应进行以下检查:A、零点示值检查(I)有零值限止钉的压力表,其
4、指针应紧靠在限止钉上。(II)无零值限止钉的压力表,起指针须在零值分度线上。B、示值检查(I)压力表指针的移动,在全分度范围内应平稳,不得有跳动或卡住现象。(II)在轻敲表壳后,其指针值变动量不得超过最大允许基本误差的1/2。现场指示型压力表在测量稳定压力时,可在测量上限值的1/3-2/3范围内使用,在测量交变压力表,则应不大于测量上限值的1/2为宜,对于在瞬间的测量时,允许使用在测量上限值的3/4。3.2 压力表:我们常用的两种压力表1)一般压力表(弹簧管) 一般压力表适用测量无爆炸,不结晶,不凝固,对铜和铜合金无腐蚀作用的液体、气体或蒸汽的压力。2)隔膜压力表 隔膜压力表采用间接测量结构,
5、适用于测量粘度大、易结晶、腐蚀性大、温度较高的液体、气体或颗粒状固体介质的压力。隔离膜片有多种材料,以适应各种不同腐蚀性介质。 3.3 双波纹管差压计 常用于气体流量测量3.4 差压变送器:电容式扩散硅压阻式单晶硅谐振硅式3.5 压力变送器:可测量表压、绝压、真空3.6 压力变送器工作原理 压力变送器是利用压力传感器将压力信号转换为频率信号,送到脉冲计数器,直接传递到CPU(微处理器)进行数据处理,经D/A转换器转换为与输入信号相对应的4-20mADC 的输出信号,并在模拟信号上叠加一个HART数字信号进行通信的压力检测仪表。流量是表征生产过程中所传送物料数量的数。一般分为重量流量和体积流量K
6、G/h、M3/hA、孔板:前后差压与流量成正比 。 B、质量流量计:克利奥里力原理,测量精度高,用于交接。C、电磁流量计:法拉第电磁感应原理。D、腰轮流量计:根据腰轮转动的频率测量流量。对介质洁净度要求高。 测量管无阻碍流动部件、无压损、直管段要求较低。 测量不受流体密度、粘度、温度、压力和电导率变化的影响。 适用于导电率5us/cm的流体流量测量 量程比大,达1:20,满量程流速范围可0.5m/s-10m/s范围自由选定利用对测量介质的两点之间由于存在液位高度所产生的压差进行测量的变送器仪表。和测量阻力表几乎一样,只不过压差范围要小。双法兰属于一种特殊的差压变送器。电浮筒是根据阿基米德原理工
7、作的,当液位变化时,浮筒(宽度是沉筒)所受浮力变化,通过支点,使扭力管受力作用后产生扭变,检测元件检测出后,变送器功能模块电路将测量信号经缓冲、放大和电压/电流变换后,输出420mA标准电流信号,此时与作用在浮筒上的浮力成正比例变化。磁翻板式液位变送器是以浮子内磁钢驱动双色薄片的翻转来指示液位的一种新型仪表。主体内磁浮子随液位的升降而上下运动,同时驱使主体外指示器内的双色薄片翻转,有液位时转示红色、无液位时转示白色。可燃气体检测器,是可燃气体检测仪是对单一或多种可燃气体浓度响应的探测器。可燃气体检测仪有催化型、红外光学型两种类型。催化型可燃气体检测器是利用难熔金属铂丝加热后的电阻变化来测定可燃
8、气体浓度。当可燃气体进入探测器时,在铂丝表面引起氧化反应(无焰燃烧),其产生的热量使铂丝的温度升高,而铂丝的电阻率便发生变化。 第二部分:维护部分 1、检查现场仪表的外观是否完整、卫生是否干净、表体是否有水及潮气,并做好仪表防水,防碰、防砸等防护工作。 2、现场一次差变、压变要定期排污,以防测量管线,阀门堵死,排污需要作记录,做到心中有数(频繁排污或开关阀门也不利于仪表正常运行)。 3、仪表检修、现场维护或处理故障时要通知主控人员并作好应急措施,特别处理有停车的联锁回路时,一定要采取措施确保正常生产的情况下,切掉停车连锁后再处理仪表故障。 4、更换压力表时要注意“工艺实际的压力不能超过压力表量
9、程的2/3”,以次规定来确定所安装压力表量程。 5、更换热电偶时要注意热电偶输出信号的正负端(有时热电偶上标的是错误的,需要用万用表确认,热电偶输出毫伏的正端要接到补偿导线的红线上)。 6、检查现场测量仪表的管线是否有漏气、漏水现 象,否则及时处理,检查仪表信号线、电源线(配电箱)是否美观,测量管线的防腐需要完好美观。 现场仪表系统故障的基本分析步骤现场仪表测量参数一般分为温度、压力、流量、液位四大参数。现根据测量参数的不同,来分析不同的现场仪表故障所在。 1首先,分析现场仪表故障前,要比较透彻地了解相关仪表系统的生产过程、生产工艺情况及条件,了解仪表系统的设计方案、设计意图,仪表系统的结构、
10、特点、性能及参数要求等。 2在分析检查现场仪表系统故障之前,要向现场操作工人了解生产的负荷及原料的参数变化情况,查看故障仪表的记录曲线,进行综合分析,以确定仪表故障原因所在。 3如果仪表记录曲线为一条死线(一点变化也没有的线称死线),或记录曲线原来为波动,现在突然变成一条直线;故障很可能在仪表系统。因为目前记录仪表大多是 DCS 计算机系统,灵敏度非常高,参数的变化能非常灵敏的反应出来。此时可人为地改变一下工艺参数,看曲线变化情况。如不变化,基本断定是仪表系统出了问题;如有正常变化,基本断定仪表系统没有大的问题。 4变化工艺参数时,发现记录曲线发生突变或跳到最大或最小,此时故障也常在仪表系统。
11、 5故障出现以前仪表记录曲线一直表现正常,出现波动后记录曲线变得毫无规律或使系统难以控制,甚至连手动操作也不能控制,此时故障可能是工艺操作系统造成的。 6当发现 DCS 显示仪表不正常时,可以到现场检查同一直观仪表的指示值,如果它们差别很大,则很可能是仪表系统出现故障。总之,分析现场仪表故障原因时,要特别注意被测控制对象和控制阀的 特性变化,这些都可能是造成现场仪表系统故障的原因。所以,我们要从现场仪表系统和工艺操作系统两个方面综合考虑、仔细分析,检查原因所在。 1、流量控制仪表系统故障分析步骤 (1)流量控制仪表系统指示值达到最小时,首先检查现场检测仪表,如果正常,则故障在显示仪表。当现场检
12、测仪表指示也最小,则检查调节阀开度,若调节阀开度为零,则常为调节阀到调节器之间故障。当现场检测仪表指示最小,调节阀开度正常,故障原因很可能是系统压力不够、系统管路堵塞、泵不上量、介质结晶、操作不当等原因造成。若是仪表方面的故障,原因有:孔板差压流量计可能是正压引压导管堵;差压变送器正压室漏;机械式流量计是齿轮卡死或过滤网堵等。 (2)流量控制仪表系统指示值达到最大时,则检测仪表也常常会指示最大。此时可手动遥控调节阀开大或关小,如果流量能降下来则一般为工艺操作原因造成。若流量值降不下来,则是仪表系统的原因造成,检查流量控制仪表系统的调节阀是否动作;检查仪表测量引压系统是否正常;检查仪表信号传送系
13、统是否正常。 (3)流量控制仪表系统指示值波动较频繁,可将控制改到手动,如果波动减小,则是仪表方面的原因或是仪表控制参数 PID 不合适,如果波动仍频繁,则是工艺操作方面原因造成。2、液位控制仪表系统故障分析步骤 (1)液位控制仪表系统指示值变化到最大或最小时,可以先检查检测仪表看是否正常,如指示正常,将液位控制改为手动遥控液位,看液位变化情况。如液位可以稳定在一定的范围,则故障在液位控制系统;如稳不住液位,一般为工艺系统造成的故障,要从工艺方面查找原因。 (2)差压式液位控制仪表指示和现场直读式指示仪表指示对不上时,首先检查现场直读式指示仪表是否正常,如指示正常,检查差压式液位仪表的负压导压
14、管封液是否有渗漏;若有渗漏,重新灌封液,调零点;无渗漏,可能是仪表的负迁移量不对了,重新调整迁移量使仪表指示正常。 (3)液位控制仪表系统指示值变化波动频繁时,首先要分析液面控制对象的容量大小,来分析故障的原因,容量大一般是仪表故障造成。容量小的首先要分析工艺操作情况是否有变化,如有变化很可能是工艺造成的波动频繁。如没有变化可能是仪表故障造成。以上只是现场四大参数单独控制仪表的现场故障分析,实际现场还有一些复杂的控制回路,如串级控制、分程控制、程序控制、联锁控制等等。这些故障的分析就更加复杂,要具体分析3、温度仪表故障分析: 分析温度控制仪表系统故障时,首先要注意两点:该系统仪表多采用电动仪表
15、测量、指示、控制;该系统仪表的测量往往滞后较大。 (1)温度仪表系统的指示值突然变到最大或最小,一般为仪表系统故障。因为温度仪表系统测量滞后较大,不会发生突然变化。此时的故障原因多是热电偶、热电阻、补偿导线断线或变送器放大器失灵造成。 (2)温度控制仪表系统指示出现快速振荡现象,多为控制参数PID 调整不当造成。 (3)温度控制仪表系统指示出现大幅缓慢的波动,很可能是由于工艺操作变化引起的,如当时工艺操作没有变化,则很可能是仪表控制系统本身的故障。 (4)温度控制系统本身的故障分析步骤:检查调节阀输入信号是否变化,输入信号不变化,调节阀动作,调节阀膜头膜片漏了;检查调节阀定位器输入信号是否变化,输入信号不变化,输出信号变化,定位器有故障;检查定位器输入信号有变化,再查调节器输出有无变化,如果调节器输入不变化,输出变化,此时是调节器本身的故障。 4、压力控制仪表系统故障分析步骤 (1)压力控制系统仪表指示出现快速振荡波动时,首先检查工艺操作有无变化,这种变化多半是工艺操作和调节器 PID 参数整定不好造成。 (2)压力控制系统仪表指示出现死线,工艺操作变化了压力指示还是不变化,一般故障出现在压力测量系统中,首先检查测量引压导管系统是否有堵的现象,不堵,检查压力变送器输出系统有无变化,有变化,故障出在控制器测量指示系统。 谢谢!谢谢!
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。