1、5/13/20221伺服驱动系统伺服驱动系统6.1 概述概述6.1.1 伺服系统的概念伺服系统的概念n伺服系统伺服系统是指以机械位置或角度作为控制对象的自动控制系统。数控机床伺服系统又称为位置随动系统位置随动系统, 简称为伺服系统。n 常见的伺服系统有开环与闭环系统之分,直流与交流伺服系统之分,进给伺服与主轴驱动系统之分,电液伺服与电气伺服系统之分。n伺服系统是一种执行机构,它接受来自数控装置的进给指令信号,经变换、调节和放大后驱动执行件,转化为直线或旋转运动。5/13/20222伺服驱动系统伺服驱动系统(1)进给驱动进给驱动n控制机床各坐标轴的切削进给运动,是一种精密的位置跟踪与定位系统,它
2、包括速度控制,也是一般概念的伺服驱动系统。(2)主轴驱动主轴驱动n控制机床主轴的旋转运动和切削过程中的转矩和功率,一般以速度控制为主。对C坐标功能的主轴驱动也需要位置控制。(3)辅助驱动辅助驱动n在各类加工中心或多功能数控机床中,控制刀库、料库等辅助系统,多采用简易的位置控制。5/13/20223伺服驱动系统伺服驱动系统组成:组成:伺服电机伺服电机 驱动信号控制转换电路驱动信号控制转换电路 电子电力驱动放大模块电子电力驱动放大模块 位置调节单元位置调节单元 速度调节单元速度调节单元 电流调节单元电流调节单元 检测装置检测装置一般闭环系统为三环结构一般闭环系统为三环结构:位置环、速度环、电流环。
3、:位置环、速度环、电流环。5/13/20224伺服驱动系统位置调解位置调解速度调解速度调解电流调解电流调解转换驱动转换驱动工作台工作台电流反馈电流反馈速度反馈速度反馈位置反馈位置反馈MGw位置、速度和电流环均由位置、速度和电流环均由调节控制模块调节控制模块、检测检测和和反馈反馈部分组成。部分组成。电力电子驱动装置由电力电子驱动装置由驱动信号产生电路驱动信号产生电路和和功率放大器功率放大器组成。组成。w严格来说:严格来说:w位置控制包括位置、速度和电流控制;位置控制包括位置、速度和电流控制;w速度控制包括速度和电流控制。速度控制包括速度和电流控制。5/13/20225(1)精度高精度高 伺服系统
4、的精度是指输出量能复现输入量的精确程度。包括定位精度和轮廓加工精度。(2)稳定性好稳定性好 稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。直接影响数控加工的精度和表面粗糙度。(3)快速响应快速响应 快速响应是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。(4)调速范围宽调速范围宽 调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。030m/min。(5)低速大转矩低速大转矩 进给坐标的伺服控制属于恒转矩控制,在整个速度范围内都要保持这个转矩;主轴坐标的伺服控制在低速时为恒转矩控制,能提供较大转矩。在高速时为恒功率控制,具有足够大
5、的输出功率。伺服驱动系统伺服驱动系统5/13/20226n伺服驱动电机是伺服系统的重要驱动元件。为满足上述要求,对伺服电动机的要求应该是: 从最低速到最高速电机都要平稳运转,转距波动要小,尤其是在低速如0.1r/min或更低转速时,仍有稳定的速度而无爬行现象。 电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。 为了满足快速响应的要求,电机应该有较小的转动惯量和大的堵转转矩,并且有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上角加速度的能力,才能保证电机在0.2s以内从静止到额定转速。 电机应能承受频繁启动、制动
6、和反转。伺服驱动系统5/13/20227伺服驱动系统n开环位置伺服系统开环位置伺服系统也叫步进式伺服系统,其驱动元件为步进电机。n功率步进电机控制系统的结构最简单,控制最容易,维修最方便,控制为全数字化,这完全符合数字化控制技术的要求,控制系统与步进电机的驱动控制电路结为一体。n随着计算机技术的发展,除功率驱动电路之外,其它硬件电路均可由软件实现,从而简化了系统结构,降低成本,提高了系统的可靠性。n而步进电机的功耗太多,速度也不高。n目前的步进电机在脉冲当量为1微米时,最高移动仅仅为2m/min,且功率越大,移动速度越低,故主要用于速度与精度要求不高的经济型数控机床及旧设备改造中。5/13/2
7、0228伺服驱动系统n步进电机步进电机是一种将电脉冲信号转换成相应的机械角位移或直线位移的控制电机。步进电机又称脉冲电动机或电脉冲马达。n其角位移量与电脉冲数成正比,其转速与电脉冲频率成正比,通过改变脉冲频率就可以调节电动机的转速。n最大缺点最大缺点是容易失步,特别是在大负载和速度较高的情况下,失步更容易发生。n但是近年来发展起来的恒流斩波驱动、PWM驱动、微步驱动、超微步驱动及其他们的综合运用,使得步进电机的驱动能力有很大提高n主要用于数控机床的开环伺服系统。5/13/20229伺服驱动系统伺服驱动系统n按运动方式分:有旋转式、直线运动式、平面运动式和滚动运动式。n按工作原理分:有反应式(磁
8、阻式)有反应式(磁阻式)、电磁式、永磁式、永永磁感应式(混合式)磁感应式(混合式)。n按使用场合分:有功率步进电机和控制步进电机。n按电机结构分:有单段式(径向式)、多段式(轴向式)、印刷绕组式。n按工作相数分:有三相、四相、五相等有三相、四相、五相等。n按使用频率分:有高频步进电机和低频步进电机。n数控机床中使用较多的是反应式步进电机反应式步进电机和永磁感应式步进永磁感应式步进电机电机5/13/2022105/13/202211伺服驱动系统伺服驱动系统n步进电机又称脉冲电机,每接受一个脉冲信号转子转过一个角度,称为步步距角。距角。n脉冲数目:位移大小;脉冲频率:速度大小;通电顺序:方向控制。
9、n步进电机的结构:(单段式三相反应式步进电机结构):步进电机的结构:(单段式三相反应式步进电机结构):n工作原理:工作原理:电磁吸合 转子:转子:开槽形成齿 定子:定子:有磁极n以三相单三拍为例说明工作原理:第一拍:第一拍:A相励磁绕组通电,B、C励磁绕组断电。A相定子绕组的磁力线为保持磁阻最小,给转子施加力矩,使相邻转子齿与之对齐。第二拍:第二拍:B相励磁绕组通电,C、A励磁绕组断电。第三拍:第三拍:C相励磁绕组通电,A、B励磁绕组断电。n如通电顺序:A、B、C逆时针旋转;如通电顺序相反,则顺时针旋转n通电顺序也可以A-AB-B-BC-C-CA5/13/202212伺服驱动系统5/13/20
10、2213伺服驱动系统5/13/202214伺服驱动系统n同一台步进电机,因通电方式的不同,运行时的步距角也是不同的,采用单、双拍通电方式时,步距角要比单拍通电方式减小一半。n实际使用中,单三拍通电方式由于在切换时一相绕组断电,而另一相绕组开始通电容易造成失步。此外,由单一绕组通电吸引转子,也容易使转子在平衡位置附近产生振荡,运行的稳定性差,所以很少采用。通常将它改成“双三拍通电方双三拍通电方式式”。n上述这种简单结构的反应式步进电机的步距角较大,如在数控机床中应用就会影响到加工工件的精度。实际中采用的是实际中采用的是小步距角的步进电机小步距角的步进电机。5/13/202215伺服驱动系统伺服驱
11、动系统(1 1)步距角和静态步距角(误差)步距角和静态步距角(误差) 步距角计算公式: 式中:式中:m定子磁极项数 z转子齿数 k通电方式相邻两次通电项数相同取k=1;否则k=2。当步进电机空载且以单脉冲输入时,其实际步距角与理论步距角之差称为静态步距角误差静态步距角误差,它随步进电机制造精度而变化。一般在10-30 的范围内。mzK3605/13/202216伺服驱动系统n图所示为步进电动机的展开图。其中定子有6个极,转子有40个齿。当A极下的定、转子齿对齐时,B极和C极下的齿就分别和转子齿相错三分之一的转子齿距。n反应式步进电动机的转子齿数Zr,基本上由步距角的要求所决定。但是为了能实现上
12、述“自动错位”,转子的齿数就必须满足一定条件,而不能为任意数值。当定子的相邻极属于不同的相时,在某一极下若定子和转子的齿对齐时,则要求在相邻极下的定子和转子之间应错开转子齿距的1/m。5/13/202217伺服驱动系统伺服驱动系统n当步进电机不改变通电状态,转子处于不动状态,如果在电机轴上外加一个负载转矩,使转子按一定的方向转过一个角度,此时转子所受的电磁转矩,称为静态转矩静态转矩,角度称为失调角失调角。描述静态转矩与的关系叫作步进步进电机的静态矩角特性电机的静态矩角特性。5/13/202218伺服驱动系统n各项的矩角特性差异不应该太大,否则会影响步距精度及引起低频振荡。可以通过调整相电流的方
13、法,使电动机矩角特性大致相同。n两个齿中心线之间的距离叫齿距齿距,当转子转过一个齿距,矩角特性就变化一个周期,相当于2电角度。 5/13/202219伺服驱动系统n在定子、转子齿槽对准时,定、转子槽中心线重合在定子、转子齿槽对准时,定、转子槽中心线重合,失调角为=0,电磁转矩T=0。n若转子齿的中心线对准定子槽中心线转子齿的中心线对准定子槽中心线,失调角=,这时相邻两定子齿对这转子齿有同样的拉力,但方向相反,故电磁转矩T=0。n在失调角在失调角=/2/2(即(即1/41/4齿距处)齿距处),转矩最大,转矩方向是使转子位置趋向失调角为零。n当失调角小于当失调角小于-或大雨或大雨+时时,该转子齿已
14、进入了另一个定子齿的拉力范围,转矩方向趋于使转子齿与下一个齿对齐。当当=22,转子齿与另一个定子齿对齐,转矩又为零。 5/13/202220伺服驱动系统n如上所述,在电磁转矩的作用下,转子有一定的稳定平衡稳定平衡点点。n如果步进电机空载,则稳定在平衡点为=0,而=处为不稳定平衡点不稳定平衡点。n稳定平衡点只有一个。n在静态情况下,如受外负载转矩的作用,使转子偏离它的平衡点,但没有超过相邻的不稳定平衡点不稳定平衡点,则当外转矩除去后,转子在电磁转矩的作用下,仍能回到原来的平衡点。5/13/202221伺服驱动系统伺服驱动系统n步进电机矩角特性曲线上电磁转矩的最大值称为最大静态转最大静态转矩矩。它
15、与通电状态及绕组内电流值有关。在一定的通电状态下,最大静转矩与绕组内电流的关系,称为最大静转矩特性最大静转矩特性。n当控制电流很小时,最大静转矩与电流的平方成正比地增大,当电流稍大时,受磁路饱和的影响,最大转矩Tmax上升变缓,电流很大时曲线趋向饱和。5/13/202222伺服驱动系统伺服驱动系统n下图为三相步进电机的矩角特性曲线,则A相和B相的矩角特性交点的纵坐标值为起动转矩。它表示步进电机单相激励时所能带动的极限负载转矩。5/13/202223伺服驱动系统伺服驱动系统n步进电机的工作频率是指电动机按指令的要求进行正常工作的最大脉冲频率。n所谓正常工作就是指步进电机不失步地工作,即一个脉冲移
16、动一个步距角。所谓失步的内容包括:丢步和越步丢步和越步。n步进电动机的工作频率,通常分为启动频率、制动频率启动频率、制动频率及连续工作频率及连续工作频率。对于同样负载转矩来说,正、反向起动频率和制动频率都是一样的,而连续工作频率要高得多。n一般步进电动机的技术参数中只给出起动频率和连续工作频率。5/13/202224起动频率起动频率n空载时,步进电机由静止状态突然启动,并进入不丢步的正常运行的最高频率,称为空载起动频率。空载起动频率。n加给步进电机的指令脉冲频率如果大于起动频率,就不能正常工作。步进电机加负载时启动频率比空载要低。而且随着负载加大,起动频率会进一步降低。n起动频率的大小由许多因
17、素决定,绕组时间常数越小,负载转矩和转动惯量越小、步距角越小,则起动频率越高。5/13/202225伺服驱动系统连续运行频率连续运行频率n步进电机启动后,其运行速度能跟踪指令脉冲频率连续上升而不丢步的最高频率,称为连续运行频率连续运行频率。其值远大于起动其值远大于起动频率频率,它也随着电动机所带负载得性质和大小而异,与驱动电源也有很大关系。 n连续运行状态时的动特性_矩频特性描述连续稳定运行输出转矩与连续运行频率之间的关系运行矩频特性是描述步进电动机在连续运行时,输出转矩与连续运行频率之间的关系,它是衡量步进电动机运转时承载能力的动态指标。下页图中每一频率所对应的转矩称为动态转矩动态转矩。从图
18、中可以看出,随着运行频率的上升,输出转矩下降,承载能力下降。当运行频率超过最高频率是,步进电动机便无法工作。 5/13/2022265/13/202227伺服驱动系统n因步进电动机的控制绕组中存在电感,相应地有一定的电气时间常数,所以控制绕组中电流增长也有一个过程。n当脉冲频率很高时控制绕组中的电流不能达到稳定值,故电动机的最大动态转矩小于最大静转矩。n而且脉冲频率越高,最大动态转矩也就越小,在步进电动机运行时,对应于某一频率,只有当负载转矩小于它在该频率的最大动态转矩,电动机才能够正常运转。5/13/2022285/13/202229伺服驱动系统5/13/202230伺服驱动系统5/13/2
19、022315/13/2022325/13/2022335/13/2022345/13/2022355/13/202236伺服驱动系统伺服驱动系统n由步进电机的工作原理知道,要使步进电机正常一步一步地运行,控制脉冲必须按一定的顺序分别供给电动机各项脉冲分配。实现脉冲分配可以采用如下两种形式:一种是硬件脉冲分配(或称脉冲分配器),另一种是软件脉冲分配器,是由计算机的软件完成的。硬件环行分配器硬件环行分配器n目前已经有很多可靠性高、尺寸小、使用方便的集成电路脉冲分配器。nTTL脉冲分配器:YB013、YB014、YB015、YB016,均为18个管角的直插式封装。nCMOS型:如CH250为16个管
20、角的直插式封装5/13/202237伺服驱动系统5/13/202238伺服驱动系统5/13/2022395/13/202240伺服驱动系统5/13/202241伺服驱动系统伺服驱动系统5/13/202242伺服驱动系统伺服驱动系统5/13/202243伺服驱动系统伺服驱动系统5/13/202244伺服驱动系统伺服驱动系统三种驱动电路电流波形比较三种驱动电路电流波形比较5/13/202245伺服驱动系统n单电压驱动电路单电压驱动电路的优点是线路简单,缺点是电流上升不够快,高频时带负载能力低。 n高低压驱动电路高低压驱动电路的优点是在较宽的频率范围有较大的平均电流,能产生较大且稳定的平均转矩,其缺
21、点是电流波顶有谷点。n斩波驱动电路斩波驱动电路虽然复杂,但它的优点比较突出:(1)绕组的脉冲电流边沿陡,快速响应好。(2)功率小,效率高。因为电路无外接电阻Rc,而采样电阻Re又很小(一般0.2左右),所以整个系统的功耗下降很多,相应地提高了效率。(3)输出转矩恒定。由于采样电阻Re的反馈作用,使绕组中电流可以恒定在额定电流数值左右,而且不随步进电机的转速而变化,从而保证在很大的频率范围内,步进电机都能输出恒定的转矩。5/13/202246伺服驱动系统伺服驱动系统n在电源电压一定时,步进电机绕组电流的上冲值是随工作频率的升高而降低的,使输出转矩随电机转速的提高而下降。要保证步进时的输出转矩就需
22、要提高供电电压。n 从上述的驱动电路来看,为了提高驱动系统的快速响应,采用提高供电电压、加快电流上升的措施。但在低频工作时,步进电机的振荡加剧,甚至失步。n从原理上讲,为了减小低频振荡,应使低速时绕组中的电流上升沿较平缓,这样才能使转子在到达新的稳定平衡位置时不产生过冲。而在高速使则用使电流前沿陡,以产生足够的绕组电流,才能提高步进电机的带负载能力。这就要求驱动电源对绕组提供的电压与电动机运行频率建立直接关系,即低频时用较低的电压供电,高频时用较高电压供电低频时用较低的电压供电,高频时用较高电压供电。n 电压随频率可以由不同的方法实现,如分频来调压、随电压频率线性地分频来调压、随电压频率线性地
23、变化变化等。5/13/202247伺服驱动系统伺服驱动系统n在前述步进电动机工作原理中,讲到步距角由步进电动机的齿距角及绕组相数等电动机结构所决定。在实际应用中,为了提高进给运动的分辨率,要求对步距角进一步细分。在不改变步进电机结构的前提下,为了达到这一目的,将额定电流以阶梯波的方式输入。此时电流分成多个台阶,则转子就以同样的步数转过一个步进电机的固定步距角。这样将一个步距角细分成若干步的驱动方法称为细分驱动细分驱动。n获得阶梯电流一般有两种方法获得阶梯电流一般有两种方法: 一是先产生时序脉冲,放大后在电动机电枢内叠加,电枢绕组是它们的公共负载;二是先在加法器内将时序脉冲叠加成阶梯电压,后进行
24、放大,在电枢内获得阶梯电流波形。n细分驱动的优点是使步距角减小、运行平稳,提高匀速性,并能减弱细分驱动的优点是使步距角减小、运行平稳,提高匀速性,并能减弱或消除振荡或消除振荡。5/13/202248伺服驱动系统伺服驱动系统n步进式伺服驱动系统是一个开环系统,在此系统中,步进电机的质量、机械传动部分的结构和质量以及控制电路的完善与否,减小步距角,采用精密传动副,减小传动链中传动间隙等。但这些因素往往由于结构和工艺的关系而受到一定的限制。为此,需要从控制方法上采取一些措施,弥补其不足。1.1.细分线路细分线路n所谓细分线路细分线路,是把步进电机的一步再分得细一些。如十细分线路,将原来输入一个进给脉
25、冲步进电机走一步变为输入10个脉冲才走一步。换句话说,采用十细分线路后,在进给速度不变的情况下,可使脉冲当量缩小到原来的110。5/13/202249伺服驱动系统n若无细分,定子绕组的电流是由零跃升到额定值的,相应的角位移如图(a)所示。采用细分后,定子绕组的电流要经过若干小步的变化,才能达到额定值,相应的角位移如图(b)所示。5/13/202250伺服驱动系统 2.齿隙补偿齿隙补偿n齿隙补偿又称反向间隙补偿。n机械传动链在改变转向时,由于齿隙的存在,会引起步进电机的空走,而无工作台的实际移动。n在开环伺服系统中,这种齿隙误差对于机床加工精度具有很大的影响,必须加以补偿。n齿隙补偿的原理是:齿
26、隙补偿的原理是:先测出齿隙的大小,在加工过程中,每当检测到工作台的进给方向改变时,在改变后的方向增加进给脉冲指令,用以克服因步进电机的空走而造成的齿隙误差。5/13/202251伺服驱动系统 3.3.螺距误差补偿螺距误差补偿n在步进式开环伺服驱动系统中,丝杠的螺距积累误差直接影响着工作台的位移精度,若想提高开环伺服驱动系统的精度,就必须予以补偿。补偿原理补偿原理: :n通过对丝杠的螺距进行实测,得到丝杠全程的误差分布曲线。n误差有正有负,当误差为正时,表明实际的移动距离大于理论的移动距离,应该采用扣除进给脉冲指令的方式进行误差的补偿,使步进电机少走一步;n当误差为负时,表明实际的移动距离小于理
27、论的移动距离,应该采取增加进给脉冲指令的方式进行误差的补偿,使步进电机多走一步。 5/13/202252伺服驱动系统具体的做法是:(1)安置两个补偿杆分别负责正误差和负误差的补偿; (2)在两个补偿杆上,根据丝杠全程的误差分布情况及如上所述螺距误差的补偿原理,设补偿开关或挡块; (3)当机床工作台移动时,安装在机床上的微动开关每与挡块接触一次,就发出一个误差补偿信号,对螺距误差进行补偿,以消除螺距的积累误差。5/13/2022535/13/202254伺服驱动系统伺服驱动系统5/13/202255伺服驱动系统伺服驱动系统6.3.1 直流伺服电动机的结构和工作原理n直流伺服电动机的种类很多,但在
28、机床系统中,目前使用最多的是永磁式的直流宽调速电动机。5/13/202256伺服驱动系统n永磁直流伺服电动机的工作原理与普通他励直流电动机的工作原理相同。只不过他励直流电动机的定子磁动势由励磁电流if产生,而永磁直流伺服电动机的定子磁动势由永磁体产生。n图所示为他励直流电动机原理图。5/13/202257伺服驱动系统n根据他励直流电动机的机械特性:n改变电枢电压、励磁电流或电枢回路电阻即可改变电机的转速。调速方法:改变电枢供电电压;改变励磁磁通;改变电枢回路电阻调速。为电动机的电磁转矩。的结构常数;是转矩系数,是电动机是转子回路电阻;是励磁磁通是机械常数;是电枢外加电压;式中,eTae2TCR
29、CUeTeeTCCRCUn5/13/202258伺服驱动系统伺服驱动系统n永磁式宽调速直流伺服电动机的磁场磁通是恒定的,只能按电压控制方式调速,目前有两种驱动方式,一种是晶闸管驱动(SCR)方式,另一种是晶体管脉宽调制方式(PWM).n所谓脉宽调速,其原理是利用脉宽调制器对大功率晶体管开关时间进行控制,将直流电压转换成某一频率的方波电压,加到直流电动机电枢两端,通过对方波脉冲宽度的控制,改变电枢两端的平均电压,从而达到调节电动机转速的目的。n脉宽调制速度控制单元的核心由两部分构成:一是主回路主回路,即脉宽调制式的开关放大器,二是脉宽调制器脉宽调制器,这两部分也是PWM控制方式的核心。5/13/
30、202259伺服驱动系统 1 1PWMPWM系统功率转换电路系统功率转换电路主主回路回路nPWM系统功率转换电路有多种方式,这里仅以H形 双极可逆功率转换电路为例说明其工作原理。如图所示,它由四个大功率晶体管和四个续流二极管组成,四个大功率管分为两组,VT1和VT4为一组,VT2和VT3为另一组。同一组中的两个晶体管同时导通或同时关断,两组交替导通和关断。把一组控制方波加到一组大功率晶体管的基极上,同时把反向后的该组方波加到另一组的基极上,就能达到上述目的。5/13/202260伺服驱动系统伺服驱动系统n脉宽调制的任务是将连续控制信号变成方波脉冲信号方波脉冲信号,作为功率转换电路的基极输入信号
31、功率转换电路的基极输入信号,控制直流电动机的转速和转矩。方波脉冲信号可由脉宽调制器生成,也可由全数字软件生成。n脉宽调制器是PWM控制方式的另一个核心部分。脉宽调制器由调制脉冲发生器和比较放大器组成。调制脉冲发生器有三角波发生器和锯形波发生器。n(1)三角波发生器n(2)比较放大器5/13/202261伺服驱动系统n6.4.1 交流伺服电动机n直流伺服电动机具有优良的调速性能,但由于它的电刷和换向器易磨损,有时产生火花,电动机的最高速度受到限制,且直流伺服电动机结构复杂,成本较高。n交流伺服电动机无电刷,结构简单,动态响应好,输出功率较大,因而在数控机床上被广泛应用。n交流伺服电动机分为交流永磁式伺服电动机交流永磁式伺服电动机和交流感应式伺交流感应式伺服电动机服电动机。永磁式相当于交流同步电动机,常用于进给系统;感应式相当于交流感应异步电动机,常用于主轴驱动系统。其电动机旋转机理都是由定子绕组产生旋转磁场使转子运转。5/13/202262伺服驱动系统5/13/202263伺服驱动系统
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。