1、一、基本概念一、基本概念1.1.集合集合: :具有某种特定性质的事物的具有某种特定性质的事物的总体总体.组成这个集合的事物称为该集合的组成这个集合的事物称为该集合的元素元素.,21naaaA 所具有的特征所具有的特征xxM 有限集有限集无限集无限集,Ma ,Ma .,的的子子集集是是就就说说则则必必若若BABxAx .BA 记作记作1ppt课件数集分类数集分类:N-自然数集自然数集Z-整数集整数集Q-有理数集有理数集R-实数集实数集数集间的关系数集间的关系:.,RQQZZN .,相相等等与与就就称称集集合合且且若若BAABBA )(BA ,2 , 1 A例如例如,0232 xxxC.CA 则则
2、不含任何元素的集合称为不含任何元素的集合称为空集空集.)(记作记作例如例如,01,2 xRxx规定规定 空集为任何集合的子集空集为任何集合的子集.2ppt课件2.2.区间区间: :是指介于某两个实数之间的全体实数是指介于某两个实数之间的全体实数.这两个实数叫做区间的端点这两个实数叫做区间的端点.,baRba 且且bxax 称为开区间称为开区间,),(ba记作记作bxax 称为闭区间称为闭区间,ba记作记作oxaboxab3ppt课件bxax bxax 称为半开区间称为半开区间,称为半开区间称为半开区间,),ba记作记作,(ba记作记作),xaxa ),(bxxb oxaoxb有限区间有限区间无
3、限区间无限区间区间长度的定义区间长度的定义: :两端点间的距离两端点间的距离(线段的长度线段的长度)称为区间的长度称为区间的长度.4ppt课件3.3.邻域邻域: :. 0, 且且是两个实数是两个实数与与设设a).(0aU 记记作作,叫做这邻域的中心叫做这邻域的中心点点a.叫叫做做这这邻邻域域的的半半径径 . )( axaxaUxa a a ,邻邻域域的的去去心心的的点点 a. 0)( axxaU,邻域邻域的的称为点称为点数集数集 aaxx 5ppt课件4.4.常量与变量常量与变量: : 在某过程中数值保持不变的量称为在某过程中数值保持不变的量称为常量常量,注意注意常量与变量是相对常量与变量是相
4、对“过程过程”而言的而言的.通常用字母通常用字母a, b, c等表示常量等表示常量,而数值变化的量称为而数值变化的量称为变量变量.常量与变量的表示方法:常量与变量的表示方法:用字母用字母x, y, t等表示等表示变变量量.6ppt课件5.5.绝对值绝对值: : 00aaaaa)0( a运算性质运算性质:;baab ;baba .bababa )0( aax;axa )0( aax;axax 或或绝对值不等式绝对值不等式:7ppt课件二、函数概念二、函数概念例例 圆内接正多边形的周长圆内接正多边形的周长nnrSn sin2, 5 , 4 , 3 n3S5S4S6S圆内接正圆内接正n 边形边形Or
5、n )8ppt课件因变量因变量自变量自变量.)(,000处的函数值处的函数值为函数在点为函数在点称称时时当当xxfDx .),(称为函数的值域称为函数的值域函数值全体组成的数集函数值全体组成的数集DxxfyyW 变量变量y按照一定法则总有按照一定法则总有确定的数值和它对应,则称确定的数值和它对应,则称y是是x的的函数函数,记作,记作定定义义 设设x和和y是是两两个个变变量量, ,D是是一一个个给给定定的的数数集集,数集数集D叫做这个函数的叫做这个函数的定义域定义域)(xfy 如如果果对对于于每每个个数数Dx ,9ppt课件()0 x)(0 xf自变量自变量因变量因变量对应法则对应法则f函数的两
6、要素函数的两要素: : 定义域定义域与与对应法则对应法则.xyDW约定约定: 定义域是自变量所能取的使算式有意义定义域是自变量所能取的使算式有意义的一切实数值的一切实数值.21xy 例如,例如, 1 , 1 : D211xy 例如,例如,)1 , 1(: D10ppt课件定义定义: :.)(),(),(的图形的图形函数函数称为称为点集点集xfyDxxfyyxC oxy),(yxxyWD 如果自变量在定如果自变量在定义域内任取一个数值义域内任取一个数值时,对应的函数值总时,对应的函数值总是只有一个,这种函是只有一个,这种函数叫做单值函数,否数叫做单值函数,否则叫与多值函数则叫与多值函数例如,例如
7、,222ayx 11ppt课件 (1) 符号函数符号函数 010001sgnxxxxy当当当当当当几个特殊的函数举例几个特殊的函数举例1-1xyoxxx sgn12ppt课件(2) 取整函数取整函数 y=xx表示不超过表示不超过 的最大整数的最大整数 1 2 3 4 5 -2-4-4 -3 -2 -1 4 3 2 1 -1-3xyo阶梯曲线阶梯曲线x13ppt课件 0, 10, 12)(,2xxxxxf例如例如12 xy12 xy在自变量的不同变化范围中在自变量的不同变化范围中, 对应法则用不同的对应法则用不同的式子来表示的函数式子来表示的函数,称为称为分段函数分段函数.14ppt课件例例1
8、1脉冲发生器产生一个单三角脉冲脉冲发生器产生一个单三角脉冲,其波形如图其波形如图所示所示,写出电压写出电压U与时间与时间 的函数关系式的函数关系式.)0( tt解解UtoE),2(E )0 ,( 2 ,2, 0时时当当 ttEU2 ;2tE 单三角脉冲信号的电压单三角脉冲信号的电压,2(时时当当 t),(200 tEU)(2 tEU即即15ppt课件,),(时时当当 t. 0 U其表达式为其表达式为是一个分段函数是一个分段函数,)(tUU ),(, 0,2(),(22, 0,2)(tttEttEtUUtoE),2(E )0 ,( 2 16ppt课件例例2 2.)3(,212101)(的定义域的
9、定义域求函数求函数设设 xfxxxf解解 23121301)3(xxxf 212101)(xxxf 122231xx1, 3 : fD故故17ppt课件三、函数的特性三、函数的特性M-Myxoy=f(x)X有界有界无界无界M-MyxoX0 x,)(, 0,成立成立有有若若MxfXxMDX 1函数的有界性函数的有界性:.)(否否则则称称无无界界上上有有界界在在则则称称函函数数Xxf18ppt课件2函数的单调性函数的单调性:,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上任意两点上任意两点如果对于区间如果对于区间xxxxI ;)(上上是是单单调调增增加加的的在在区
10、区间间则则称称函函数数Ixf),()()1(21xfxf 恒有恒有)(xfy )(1xf)(2xfxyoI19ppt课件)(xfy )(1xf)(2xfxyoI;)(上是单调减少的上是单调减少的在区间在区间则称函数则称函数Ixf,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上任意两点上任意两点如果对于区间如果对于区间xxxxI ),()()2(21xfxf 恒有恒有20ppt课件3函数的奇偶性函数的奇偶性:偶函数偶函数有有对于对于关于原点对称关于原点对称设设,DxD )()(xfxf yx)( xf )(xfy ox-x)(xf;)(为偶函数为偶函数称称xf2
11、1ppt课件有有对于对于关于原点对称关于原点对称设设,DxD )()(xfxf ;)(为奇函数为奇函数称称xf奇函数奇函数)( xf yx)(xfox-x)(xfy 22ppt课件4函数的周期性函数的周期性:(通常说周期函数的周期是指其最小正(通常说周期函数的周期是指其最小正周期周期).,)(Dxf的定义域为的定义域为设函数设函数如果存在一个不为零的如果存在一个不为零的.)()(恒成立恒成立且且xflxf 为周为周则称则称)(xf.)( ,DlxDxl 使得对于任一使得对于任一数数.)(,的周期的周期称为称为期函数期函数xfl2l 2l23l 23l23ppt课件四、反函数四、反函数0 x0y
12、0 x0yxyDW)(xfy 函数函数oxyDW)(yx 反函数反函数o24ppt课件)(xfy 直直接接函函数数xyo),(abQ),(baP)(xy 反函数反函数 直接函数与反函数的图形关于直线直接函数与反函数的图形关于直线 对称对称.xy 25ppt课件例例3 3解解,01)( QxQxxD设设.)().21(),57(的性质的性质并讨论并讨论求求xDDDD , 1)57( D, 0)21( D, 1)( xDDoxy1单值函数单值函数, 有界函数有界函数,偶函数偶函数,周期函数周期函数(无最小正周期无最小正周期)不是单调函数不是单调函数,26ppt课件五、小结五、小结基本概念基本概念集
13、合集合, 区间区间, 邻域邻域, 常量与变量常量与变量, 绝对值绝对值.函数的概念函数的概念函数的特性函数的特性有界性有界性, ,单调性单调性, ,奇偶性奇偶性, ,周期性周期性. .反函数反函数27ppt课件思考题思考题设设0 x,函函数数值值21)1(xxxf ,求求函函数数)0()( xxfy的的解解析析表表达达式式.28ppt课件思考题解答思考题解答设设ux 1则则 2111uuuf ,112uu 故故)0(.11)(2 xxxxf29ppt课件一、一、 填空题填空题: :1 1、 若若2251tttf , ,则则_)( tf, , _)1(2 tf. .2 2、 若若 3,sin3,
14、 1)(xxxt, , 则则)6( =_=_,)3( =_.=_. 3 3、不等式、不等式15 x的区间表示法是的区间表示法是_._. 4 4、设、设2xy , ,要使要使 ), 0( Ux 时,时,)2 , 0(Uy , , 须须 _._.练练 习习 题题30ppt课件二、证明二、证明xylg 在在), 0( 上的单调性上的单调性. .三、证明任一定义在区间三、证明任一定义在区间)0(),( aaa上的函数可表上的函数可表 示成一个奇函数与一个偶函数之和示成一个奇函数与一个偶函数之和. .四、设四、设)(xf是以是以 2 2 为周期的函数,为周期的函数,且且 10, 001,)(2xxxxf
15、, ,试在试在),( 上绘出上绘出)(xf的图形的图形. .五、证明:两个偶函数的乘积是偶函数,两个奇函数的五、证明:两个偶函数的乘积是偶函数,两个奇函数的 乘积是偶函数,偶函数与奇函数的乘积是奇函数乘积是偶函数,偶函数与奇函数的乘积是奇函数. .六、证明函数六、证明函数acxbaxy 的反函数是其本身的反函数是其本身. .七七、求求xxxxeeeexf )(的的反反函函数数,并并指指出出其其定定义义域域. .31ppt课件一、一、1 1、225tt , ,222)1(2)1(5 tt; 2 2、1,11,1; 3 3、(4,6)(4,6); 4. 4.2, 0( . .七、七、)1 , 1(
16、 ,11ln xxy. .练习题答案练习题答案32ppt课件一、基本初等函数一、基本初等函数1.幂函数幂函数)( 是常数是常数 xyoxy)1 , 1(112xy xy xy1 xy 33ppt课件2.指数函数指数函数)1, 0( aaayxxay xay)1( )1( a)1 , 0( xey 34ppt课件3.对数函数对数函数)1, 0(log aaxyaxyln xyalog xya1log )1( a)0 , 1( 35ppt课件4.三角函数三角函数正弦函数正弦函数xysin xysin 36ppt课件xycos xycos 余弦函数余弦函数37ppt课件正切函数正切函数xytan x
17、ytan 38ppt课件xycot 余切函数余切函数xycot 39ppt课件正割函数正割函数xysec xysec 40ppt课件xycsc 余割函数余割函数xycsc 41ppt课件5.反三角函数反三角函数xyarcsin xyarcsin 反反正正弦弦函函数数42ppt课件xyarccos xyarccos 反反余余弦弦函函数数43ppt课件xyarctan xyarctan 反正切函数反正切函数44ppt课件 幂函数幂函数,指数函数指数函数,对数函数对数函数,三角函数和反三角函数和反三角函数统称为三角函数统称为基本初等函数基本初等函数.xycot 反余切函数反余切函数arcxycot
18、arc45ppt课件二、复合函数二、复合函数 初等函数初等函数1.复合函数复合函数,uy 设设,12xu 21xy 定义定义: 设函数设函数)(ufy 的定义域的定义域fD, 而函数而函数)(xu 的值域为的值域为 Z, 若若 ZDf, 则称则称函数函数)(xfy 为为x的的复合函数复合函数.,自自变变量量x,中中间间变变量量u,因变量因变量y46ppt课件注意注意: :1.不是任何两个函数都可以复合成一个复不是任何两个函数都可以复合成一个复合函数的合函数的;,arcsinuy 例如例如;22xu )2arcsin(2xy 2.复合函数可以由两个以上的函数经过复复合函数可以由两个以上的函数经过
19、复合构成合构成.,2cotxy 例如例如,uy ,cotvu .2xv 2.初等函数初等函数 由常数和基本初等函数经过有限次由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用四则运算和有限次的函数复合步骤所构成并可用一个式子表示一个式子表示的函数的函数,称为称为初等函数初等函数.47ppt课件四、小结四、小结函数的分类函数的分类:函数函数初等函数初等函数非初等函数非初等函数( (分段函数分段函数, ,有无穷多项等函数有无穷多项等函数) )代数函数代数函数超越函数超越函数有理函数有理函数无理函数无理函数有理整函数有理整函数( (多项式函数多项式函数) )有理分函数有理分函数
20、( (分式函数分式函数) )48ppt课件思考题思考题下下列列函函数数能能否否复复合合为为函函数数)(xgfy ,若若能能,写写出出其其解解析析式式、定定义义域域、值值域域,)()1(uufy 2)(xxxgu ,ln)()2(uufy 1sin)( xxgu49ppt课件思考题解答思考题解答2)()1(xxxgfy ,10| xxDx21, 0)( Df)2(不能不能01sin)( xxg)(xg的值域与的值域与)(uf的定义域之交集是空集的定义域之交集是空集.50ppt课件._1反反三三角角函函数数统统称称对对数数函函数数,三三角角函函数数和和、幂幂函函数数,指指数数函函数数,._)(ln
21、31)(2的定义域为的定义域为,则函数,则函数,的定义域为的定义域为、函数、函数xfxf一、填空题一、填空题:._32复复合合而而成成的的函函数数为为,、由由函函数数xueyu ._2lnsin4复合而成复合而成由由、函数、函数xy ._)0()()(_)0)(_)(sin_10)(52的定义域为的定义域为,的定义域为的定义域为,的定义域为的定义域为,为为)的定义域)的定义域(,则,则,的定义域为的定义域为、若、若 aaxfaxfaaxfxfxfxf练练 习习 题题51ppt课件.sin的图形的图形”作函数”作函数二、应用图形的“叠加二、应用图形的“叠加xxy .)()()(111011)(,
22、并作出它们的图形,并作出它们的图形,求求,三、设三、设xfgxgfexgxxxxfx .)()()(30. 05020. 0500220形形出图出图之间的函数关系,并作之间的函数关系,并作千克千克于行李重量于行李重量元元元,试建立行李收费元,试建立行李收费出部分每千克出部分每千克千克超千克超元,超出元,超出千克每千克收费千克每千克收费千克以下不计费,千克以下不计费,定如下:定如下:四、火车站行李收费规四、火车站行李收费规xxf52ppt课件一、一、1 1、基本初等函数;、基本初等函数; 2 2、,3ee; 3 3、2xey ; 4 4、xvvuuy2,ln,sin ; 5 5、-1,1,-1,
23、1, kk2,2,1 ,aa , , 212101 ,aaaa . .三、三、 1, 10, 00, 1)(xxxxgf; 1,11, 11,)(xexxexfg. .练习题答案练习题答案53ppt课件四、四、 50),50(3 . 0105020,2 . 0200 xxxxxy54ppt课件一、基本初等函数一、基本初等函数1.幂函数幂函数)( 是常数是常数 xyoxy)1 , 1(112xy xy xy1 xy 55ppt课件2.指数函数指数函数)1, 0( aaayxxay xay)1( )1( a)1 , 0( xey 56ppt课件3.对数函数对数函数)1, 0(log aaxyaxy
24、ln xyalog xya1log )1( a)0 , 1( 57ppt课件4.三角函数三角函数正弦函数正弦函数xysin xysin 58ppt课件xycos xycos 余弦函数余弦函数59ppt课件正切函数正切函数xytan xytan 60ppt课件xycot 余切函数余切函数xycot 61ppt课件正割函数正割函数xysec xysec 62ppt课件xycsc 余割函数余割函数xycsc 63ppt课件5.反三角函数反三角函数xyarcsin xyarcsin 反反正正弦弦函函数数64ppt课件xyarccos xyarccos 反反余余弦弦函函数数65ppt课件xyarctan
25、 xyarctan 反正切函数反正切函数66ppt课件 幂函数幂函数,指数函数指数函数,对数函数对数函数,三角函数和反三角函数和反三角函数统称为三角函数统称为基本初等函数基本初等函数.xycot 反余切函数反余切函数arcxycot arc67ppt课件二、复合函数二、复合函数 初等函数初等函数1.复合函数复合函数,uy 设设,12xu 21xy 定义定义: 设函数设函数)(ufy 的定义域的定义域fD, 而函数而函数)(xu 的值域为的值域为 Z, 若若 ZDf, 则称则称函数函数)(xfy 为为x的的复合函数复合函数.,自自变变量量x,中中间间变变量量u,因变量因变量y68ppt课件注意注
26、意: :1.不是任何两个函数都可以复合成一个复不是任何两个函数都可以复合成一个复合函数的合函数的;,arcsinuy 例如例如;22xu )2arcsin(2xy 2.复合函数可以由两个以上的函数经过复复合函数可以由两个以上的函数经过复合构成合构成.,2cotxy 例如例如,uy ,cotvu .2xv 2.初等函数初等函数 由常数和基本初等函数经过有限次由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用四则运算和有限次的函数复合步骤所构成并可用一个式子表示一个式子表示的函数的函数,称为称为初等函数初等函数.69ppt课件四、小结四、小结函数的分类函数的分类:函数函数初等
27、函数初等函数非初等函数非初等函数( (分段函数分段函数, ,有无穷多项等函数有无穷多项等函数) )代数函数代数函数超越函数超越函数有理函数有理函数无理函数无理函数有理整函数有理整函数( (多项式函数多项式函数) )有理分函数有理分函数( (分式函数分式函数) )70ppt课件思考题思考题下下列列函函数数能能否否复复合合为为函函数数)(xgfy ,若若能能,写写出出其其解解析析式式、定定义义域域、值值域域,)()1(uufy 2)(xxxgu ,ln)()2(uufy 1sin)( xxgu71ppt课件思考题解答思考题解答2)()1(xxxgfy ,10| xxDx21, 0)( Df)2(不
28、能不能01sin)( xxg)(xg的值域与的值域与)(uf的定义域之交集是空集的定义域之交集是空集.72ppt课件._1反反三三角角函函数数统统称称对对数数函函数数,三三角角函函数数和和、幂幂函函数数,指指数数函函数数,._)(ln31)(2的定义域为的定义域为,则函数,则函数,的定义域为的定义域为、函数、函数xfxf一、填空题一、填空题:._32复复合合而而成成的的函函数数为为,、由由函函数数xueyu ._2lnsin4复合而成复合而成由由、函数、函数xy ._)0()()(_)0)(_)(sin_10)(52的定义域为的定义域为,的定义域为的定义域为,的定义域为的定义域为,为为)的定义
29、域)的定义域(,则,则,的定义域为的定义域为、若、若 aaxfaxfaaxfxfxfxf练练 习习 题题73ppt课件.sin的图形的图形”作函数”作函数二、应用图形的“叠加二、应用图形的“叠加xxy .)()()(111011)(,并作出它们的图形,并作出它们的图形,求求,三、设三、设xfgxgfexgxxxxfx .)()()(30. 05020. 0500220形形出图出图之间的函数关系,并作之间的函数关系,并作千克千克于行李重量于行李重量元元元,试建立行李收费元,试建立行李收费出部分每千克出部分每千克千克超千克超元,超出元,超出千克每千克收费千克每千克收费千克以下不计费,千克以下不计费
30、,定如下:定如下:四、火车站行李收费规四、火车站行李收费规xxf74ppt课件一、一、1 1、基本初等函数;、基本初等函数; 2 2、,3ee; 3 3、2xey ; 4 4、xvvuuy2,ln,sin ; 5 5、-1,1,-1,1, kk2,2,1 ,aa , , 212101 ,aaaa . .三、三、 1, 10, 00, 1)(xxxxgf; 1,11, 11,)(xexxexfg. .练习题答案练习题答案75ppt课件四、四、 50),50(3 . 0105020,2 . 0200 xxxxxy76ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx播放播放一、
31、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限77ppt课件问问题题: :函函数数)(xfy 在在 x的的过过程程中中, 对对应应函函数数值值)(xf无无限限趋趋近近于于确确定定值值 A.;)()(任意小任意小表示表示AxfAxf .的过程的过程表示表示 xXx. 0sin)(,无限接近于无限接近于无限增大时无限增大时当当xxxfx 通过上面演示实验的观察通过上面演示实验的观察:问题问题: 如何用数学语言刻划函数如何用数学语言刻划函数“无限接近无限接近”.78ppt课件定义定义 1 1 如果对于任意给定的正数如果对于任意给定的正数 ( (不论它多么小不论它多么小),),总存在着正
32、数总存在着正数X, ,使得对于适合不等式使得对于适合不等式Xx 的一切的一切x, ,所对应的函数值所对应的函数值)(xf都满足不等式都满足不等式 Axf)(, ,那末常数那末常数A就叫函数就叫函数)(xf当当 x时的极限时的极限, ,记作记作)()()(lim xAxfAxfx当当或或:. 1 定义定义定定义义X .)(, 0, 0 AxfXxX恒恒有有时时使使当当 Axfx)(lim79ppt课件:.10情形情形x.)(, 0, 0 AxfXxX恒有恒有时时使当使当:.20情形情形xAxfx )(lim.)(, 0, 0 AxfXxX恒有恒有时时使当使当Axfx )(lim2.另两种情形另两
33、种情形: Axfx)(lim:定定理理.)(lim)(limAxfAxfxx 且且80ppt课件xxysin 3.几何解释几何解释: X X.2,)(,的带形区域内的带形区域内宽为宽为为中心线为中心线直线直线图形完全落在以图形完全落在以函数函数时时或或当当 AyxfyXxXxA81ppt课件xxysin 例例1. 0sinlim xxx证明证明证证xxxxsin0sin x1 X1 , , 0 ,1 X取取时恒有时恒有则当则当Xx ,0sin xx. 0sinlim xxx故故.)(,)(lim:的图形的水平渐近线的图形的水平渐近线是函数是函数则直线则直线如果如果定义定义xfycycxfx 8
34、2ppt课件二、自变量趋向有限值时函数的极限二、自变量趋向有限值时函数的极限问问题题: :函函数数)(xfy 在在0 xx 的的过过程程中中,对对应应函函数数值值)(xf无无限限趋趋近近于于确确定定值值 A.;)()(任意小任意小表示表示AxfAxf .000的过程的过程表示表示xxxx x0 x 0 x 0 x ,0邻域邻域的去心的去心点点 x.0程度程度接近接近体现体现xx 83ppt课件定义定义 2 2 如果对于任意给定的正数如果对于任意给定的正数 ( (不论它多不论它多么小么小),),总存在正数总存在正数 , ,使得对于适合不等式使得对于适合不等式 00 xx的一切的一切x, ,对应的
35、函数值对应的函数值)(xf都都满足不等式满足不等式 Axf)(, ,那末常数那末常数A就叫函数就叫函数)(xf当当0 xx 时的极限时的极限, ,记作记作)()()(lim00 xxAxfAxfxx 当当或或:. 1 定义定义定义定义 .)(,0, 0, 00 Axfxx恒有恒有时时使当使当84ppt课件2.几何解释几何解释:)(xfy AAA0 x0 x0 xxyo.2,)(,0的带形区域内的带形区域内宽为宽为为中心线为中心线线线图形完全落在以直图形完全落在以直函数函数域时域时邻邻的去心的去心在在当当 Ayxfyxx注意:注意:;)(. 10是是否否有有定定义义无无关关在在点点函函数数极极限
36、限与与xxf. 2有有关关与与任任意意给给定定的的正正数数 .,越越小小越越好好后后找找到到一一个个显显然然 85ppt课件例例2).( ,lim0为常数为常数证明证明CCCxx 证证Axf )(CC ,成立成立 , 0 任给任给0 .lim0CCxx , 0 任取任取,00时时当当 xx例例3.lim00 xxxx 证明证明证证,)(0 xxAxf , 0 任给任给, 取取,00时时当当 xx0)(xxAxf ,成立成立 .lim00 xxxx 86ppt课件例例4. 211lim21 xxx证明证明证证211)(2 xxAxf, 0 任给任给, 只只要要取取,00时时当当 xx函数在点函数
37、在点x=1处没有定义处没有定义.1 x,)( Axf要使要使,2112 xx就有就有. 211lim21 xxx87ppt课件例例5.lim00 xxxx 证证0)(xxAxf , 0 任给任给,min00 xx取取,00时时当当 xx00 xxxx ,)( Axf要使要使,0 xx就有就有,00 xxx .00且且不不取取负负值值只只要要 xxx.lim,0:000 xxxxx 时时当当证明证明88ppt课件3.单侧极限单侧极限:例如例如,. 1)(lim0, 10,1)(02 xfxxxxxfx证明证明设设两种情况分别讨论两种情况分别讨论和和分分00 xx,0 xx从左侧无限趋近从左侧无限
38、趋近; 00 xx记作记作,0 xx从右侧无限趋近从右侧无限趋近; 00 xx记作记作yox1xy 112 xy89ppt课件左极限左极限.)(, 0, 000 Axfxxx恒有恒有时时使当使当右极限右极限.)(, 0, 000 Axfxxx恒有恒有时时使当使当000:000 xxxxxxxxx注意注意.)0()(lim0)(000AxfAxfxxxx 或或记作记作.)0()(lim0)(000AxfAxfxxxx 或或记作记作90ppt课件.)0()0()(lim:000AxfxfAxfxx 定理定理.lim0不存在不存在验证验证xxxyx11 oxxxxxx 00limlim左右极限存在但
39、不相等左右极限存在但不相等,.)(lim0不存在不存在xfx例例6证证1)1(lim0 xxxxxxx00limlim 11lim0 x91ppt课件三、函数极限的性质三、函数极限的性质1.有界性有界性定理定理 若在某个过程下若在某个过程下, ,)(xf有极限有极限, ,则存在则存在过程的一个时刻过程的一个时刻, ,在此时刻以后在此时刻以后)(xf有界有界. .2.唯一性唯一性定理定理 若若)(limxf存在存在,则极限唯一则极限唯一.92ppt课件推论推论).()(),(, 0,)(lim,)(lim0000 xgxfxUxBABxgAxfxxxx 有有则则且且设设3.不等式性质不等式性质定
40、理定理( (保序性保序性) ).),()(),(, 0.)(lim,)(lim0000BAxgxfxUxBxgAxfxxxx 则则有有若若设设93ppt课件).0)(0)(,),(, 0),0(0,)(lim000 xfxfxUxAAAxfxx或或时时当当则则或或且且若若定理定理( (保号性保号性) ).0(0),0)(0)(,),(, 0,)(lim000 AAxfxfxUxAxfxx或或则则或或时时当当且且若若推论推论94ppt课件例如例如,xxysin 1sinlim0 xxx, 11sinlim nnn, 11sinlim nnn11sin1lim22 nnnnn函数极限与数列极限的关
41、系函数极限与数列极限的关系函数极限存在的充要条件是它的任何子列的极函数极限存在的充要条件是它的任何子列的极限都存在限都存在, ,且相等且相等. .95ppt课件xy1sin 例例7.1sinlim0不存在不存在证明证明xx证证 ,1 nxn取取, 0lim nnx; 0 nx且且 ,2141 nxn取取, 0lim nnx; 0 nx且且96ppt课件 nxnnnsinlim1sinlim 而而, 1 214sinlim1sinlim nxnnn而而1lim n二者不相等二者不相等,.1sinlim0不存在不存在故故xx, 0 97ppt课件四、小结四、小结函数极限的统一定义函数极限的统一定义
42、;)(limAnfn ;)(limAxfx ;)(limAxfx ;)(limAxfx ;)(lim0Axfxx ;)(lim0Axfxx .)(lim0Axfxx .)(, 0)(lim AxfAxf恒有恒有从此时刻以后从此时刻以后时刻时刻(见下表见下表)98ppt课件过过 程程时时 刻刻从此时刻以后从此时刻以后 n xxxNNn Nx Nx Nx )(xf Axf)(0 xx 00 xx 0 xx 0 xx 00 xx00 xx过过 程程时时 刻刻从此时刻以后从此时刻以后 )(xf Axf)(99ppt课件思考题思考题试试问问函函数数 0,50,100,1sin)(2xxxxxxxf在在0
43、 x处处的的左左、右右极极限限是是否否存存在在?当当0 x时时,)(xf的的极极限限是是否否存存在在?100ppt课件思考题解答思考题解答 )(lim0 xfx, 5)5(lim20 xx左极限存在左极限存在, )(lim0 xfx, 01sinlim0 xxx右极限存在右极限存在, )(lim0 xfx)(lim0 xfx )(lim0 xfx不存在不存在.101ppt课件.01. 01_131222 yzxzxxyx,必有,必有时,只要时,只要取取,问当,问当时,时,、当、当.001. 0420_4212 yxxyx,必有,必有只要只要时,时,取取,问当,问当时,时,、当、当 证明:证明:
44、二、用函数极限的定义二、用函数极限的定义一、填空题一、填空题:0sinlim221241lim1221 xxxxxx、练练 习习 题题102ppt课件.)(:0极限各自存在并且相等极限各自存在并且相等必要条件是左极限、右必要条件是左极限、右时极限存在的充分时极限存在的充分当当函数函数三、试证三、试证xxxf?0)(存存在在时时的的极极限限是是否否在在四四、讨讨论论:函函数数 xxxx 103ppt课件一一、1 1、0 0. .0 00 00 02 2; 2 2、397. .四四、不不存存在在. .练习题答案练习题答案104ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一
45、、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限105ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限106ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限107ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限108ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限一、自变量
46、趋向无穷大时函数的极限109ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限110ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限111ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限112ppt课件.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限113ppt课件一
47、、无穷小一、无穷小1.定义定义:定义定义 1 1 如果对于任意给定的正数如果对于任意给定的正数 ( (不论它多么小不论它多么小),),总存在正数总存在正数 ( (或正数或正数X),),使得对于适合不等式使得对于适合不等式 00 xx( (或或 xX) )的一切的一切x, ,对应的函数值对应的函数值)(xf都满足不等式都满足不等式 )(xf, ,那末那末 称函数称函数)(xf当当0 xx ( (或或 x) )时为无穷小时为无穷小, ,记作记作 ).0)(lim(0)(lim0 xfxfxxx或或极限为零的变量称为极限为零的变量称为无穷小无穷小.114ppt课件例如例如, 0sinlim0 xx.
48、0sin时的无穷小时的无穷小是当是当函数函数xx, 01lim xx.1时的无穷小时的无穷小是当是当函数函数 xx, 0)1(lim nnn.)1(时的无穷小时的无穷小是当是当数列数列 nnn注意注意1.无穷小是变量无穷小是变量,不能与很小的数混淆不能与很小的数混淆;2.零是可以作为无穷小的唯一的数零是可以作为无穷小的唯一的数.115ppt课件2.无穷小与函数极限的关系无穷小与函数极限的关系:证证 必要性必要性,)(lim0Axfxx 设设,)()(Axfx 令令, 0)(lim0 xxx则有则有).()(xAxf 充分性充分性),()(xAxf 设设,)(0时的无穷小时的无穷小是当是当其中其
49、中xxx )(lim)(lim00 xAxfxxxx 则则)(lim0 xAxx .A 定理定理 1 1 ),()()(lim0 xAxfAxfxx 其中其中)(x 是当是当0 xx 时的无穷小时的无穷小.116ppt课件意义意义 1.将一般极限问题转化为特殊极限问题将一般极限问题转化为特殊极限问题(无穷无穷小小);).(,)()(. 20 xAxfxxf 误差为误差为附近的近似表达式附近的近似表达式在在给出了函数给出了函数3.无穷小的运算性质无穷小的运算性质:定理定理2 在同一过程中在同一过程中,有限个无穷小的代数和有限个无穷小的代数和仍是无穷小仍是无穷小.证证,时的两个无穷小时的两个无穷小
50、是当是当及及设设 x使得使得, 0, 0, 021 NN117ppt课件;21 时恒有时恒有当当Nx;22 时恒有时恒有当当Nx,max21NNN 取取恒有恒有时时当当,Nx 22 , )(0 x注意注意无穷多个无穷小的代数和未必是无穷小无穷多个无穷小的代数和未必是无穷小. .是无穷小,是无穷小,时时例如例如nn1, .11不是无穷小不是无穷小之和为之和为个个但但nn118ppt课件定理定理3 有界函数与无穷小的乘积是无穷小有界函数与无穷小的乘积是无穷小.证证内有界,内有界,在在设函数设函数),(100 xUu.0, 0, 0101MuxxM 恒有恒有时时使得当使得当则则,0时的无穷小时的无穷
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。