ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:292.06KB ,
文档编号:2659603      下载积分:8 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2659603.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(曈夏伊伊)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(4.3.1对数的概念教案.doc)为本站会员(曈夏伊伊)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

4.3.1对数的概念教案.doc

1、对数的概念教学设计课题对数的概念总课时 1 第1课时教材分析教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材后面安排的“阅读”内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.学情分析学生在前面的学习过程中,已基本上掌握了指数函数的概念

2、和性质,它是学习对数概念的基础。在教学中应启发学生由指数与对数的关系中,认识对数并掌握指数式与对数式的互化,而且要简要明确对数运算是指数运算的逆运算,三维教学目标1.理解对数的概念及性质,了解对数与指数的关系,培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度。2.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性。3.会根据对数的概念及其简单性质求一些特殊的对数式的值。重点、难点1、 对数概念的理解2

3、、 对数式与指数式互化教学环节教学内容师生互动设计意图提出问题1提出问题(P72思考题)中,哪一年的人口数要达到10亿、20亿、30亿,该如何解决?即:在个式子中,分别等于多少?象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).老师提出问题,学生思考回答.启发学生从指数运算的需求中,提出本节的研究对象对数, 由实际问题引入,激发学生的学习积极性.概念形成合作探究:若1.01x=,则x称作是以1.01为底的的对数.你能否据此给出一个一般性的结论?一般地,如果ax=N(a0,且a1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N

4、叫做真数.举例:如:,读作2是以4为底,16的对数.,则,读作是以4为底2的对数.合作探究师:适时归纳总结,引出对数的定义并板书.让学生经历从“特殊一一般”,培养学生“合情推理”能力,有利于培养学生的创造能力概念深化1. 对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制0,且1(2)指数式对数式幂底数对数底数指 数对数幂 N真数说明:对数式可看作一记号,表示底为(0,且1),幂为N的指数工表示方程(0,且1)的解. 也可以看作一种运算,即已知底为(0,且1)幂为N,求幂指数的运算. 因此,对数式又可看幂运算的逆运算.2. 对数的简单性质:提问:因为0,1时,则由、0=1 、1= 如

5、何转化为对数式负数和零有没有对数?根据对数的定义,=?(以上三题由学生先独立思考,再个别提问解答)由以上的问题得到 (0,且1) 0,且1对任意的力,常记为. 恒等式:=N3. 两类对数 以10为底的对数称为常用对数,常记为. 以无理数e=2.71828为底的对数称为自然对数,常记为.以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即.掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.通过本环节的教学,培养学生的用联系的关点观察问题. 应用举例例1 将下列指数式化为对数式,对数式化为指数式:(1)54=625;(2)26=;(3)()m=5.73;(

6、4)log16=4;(5)lg0.01=2;(6)ln10=2.303.例2:求下列各式中x的值(1) (2) (3) (4)课本P74练习第1,2,3,4题.例1分析:进行指数式和对数式的相互转化,关键是要抓住对数与指数幂之间的关系,以及每个量在对应式子中扮演的角色.(生口答,师板书)解:(1)log5625=4;(2)log2=6;(3)log5.73=m;(4)()4=16;(5)102=0.01;(6)e2.303=10.例2分析:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1)(2) (3) (4) 所以练习(生完成,师组织学生进行课堂评价)解答:1.(1)log28=3

7、;(2)log232=5;(3)log2=1;(4)log27=.2.(1)32=9;(2)53=125;(3)22=;(4)34=.3.(1)设x=log525,则5x=25=52,所以x=2;(2)设x=log2,则2x=24,所以x=4;(3)设x=lg1000,则10x=1000=103,所以x=3;(4)设x=lg0.001,则10x=0.001=103,所以x=3.4.(1)1;(2)0;(3)2;(4)2;(5)3;(6)5.通过这二个例题的解答,巩固所学的指数式与对数式的互化,提高运算能力归纳总结1.对数的定义及其记法;2.对数式和指数式的关系;3.自然对数和常用对数的概念.先让学生回顾反思,然后师生共同总结,完善巩固本节学习成果,形成知识体系.课后作业作业:2.2 第一课时 导学案学生独立完成巩固新知提升能力

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|