ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:603KB ,
文档编号:2695515      下载积分:18 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2695515.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(正弦定理优秀课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

正弦定理优秀课件.ppt

1、第一章第一章: :解三角形解三角形 1.问题的引入问题的引入: .(1)在我国古代就有嫦娥奔月的神话故事在我国古代就有嫦娥奔月的神话故事.明月明月 高悬高悬,我们仰望夜空我们仰望夜空,会有无限遐想会有无限遐想,不禁会问不禁会问, 月亮离我们地球有多远呢月亮离我们地球有多远呢?科学家们是怎样科学家们是怎样 测出来的呢?测出来的呢?(2)设设A,B两点在河的两岸两点在河的两岸, 只给你米尺和量角只给你米尺和量角设备设备,不过河你可以测出它们之间的距离吗不过河你可以测出它们之间的距离吗?AB我们这一节所学习的内容就是解决这些问题我们这一节所学习的内容就是解决这些问题的有力工具的有力工具.回忆一下直角

2、三角形的边角关系回忆一下直角三角形的边角关系? ABCcbasinacA 两等式间有联系吗?两等式间有联系吗?sinsinabcAB sin1C sinsinsinabcABC 思考思考:对一般的三角形对一般的三角形,这个结论还能成立吗这个结论还能成立吗?2.定理的推导定理的推导1.1.1 正弦定理正弦定理sinbcB (1)当当 是锐角三角形时是锐角三角形时,结论是否还成立呢结论是否还成立呢?ABC D如图如图:作作AB上的高是上的高是CD,根椐根椐三角形的定义三角形的定义,得到得到.sinsinbcAEBCBC同同理理, 作, 作有有 sinsinsinabcABC 1.1.1 正弦定理正

3、弦定理sin ,sinCDaB CDbA sinsinaBbA 所所以以 sinsinabAB 得得到到 BACabcE(2)当当 是钝角三角形时是钝角三角形时,以上等式是否仍然成立以上等式是否仍然成立?ABCBACbca1.1.1 正弦定理正弦定理DCcBbAasinsinsin 正弦定理正弦定理 在一个三角形中,各边和它所在一个三角形中,各边和它所 对角的正弦的比相等,即对角的正弦的比相等,即含三角形的三边及三内角含三角形的三边及三内角,由己知二角一边由己知二角一边或二边一角可表示其它的边和角或二边一角可表示其它的边和角定理结构特征定理结构特征:1.1.1 正弦定理正弦定理剖析定理、加深理

4、解sinsinsinabcABC1 1、A+B+C=A+B+C=2 2、大角对大边,大边对大角、大角对大边,大边对大角正弦定理:剖析定理、加深理解3 3、正弦定理可以解决三角形中的问题:、正弦定理可以解决三角形中的问题: 已知已知两角和一边两角和一边,求其他角和,求其他角和边边 已知已知两边和其中一边的对角两边和其中一边的对角,求另一边,求另一边的对角,进而可求其他的边和角的对角,进而可求其他的边和角sinsinsinabcABC正弦定理:剖析定理、加深理解4 4、一般地,把三角形的三个角、一般地,把三角形的三个角A A,B B,C C和它们的对边和它们的对边a a,b b,c c叫做叫做三角

5、形的元三角形的元素素。已知三角形的几个元素求其他元素。已知三角形的几个元素求其他元素的过程叫的过程叫解三角形解三角形sinsinsinabcABC正弦定理:剖析定理、加深理解5 5、正弦定理的变形形式、正弦定理的变形形式6 6、正弦定理、正弦定理,可以用来判断三角形的,可以用来判断三角形的形状,其主要功能是实现三角形边角关形状,其主要功能是实现三角形边角关系的转化系的转化sinsinsinabcABC正弦定理:例例1 在在 已知已知 , 解三角形解三角形. ABC 0030 ,135 ,2ABa通过例题你发现了什么一般性结论吗通过例题你发现了什么一般性结论吗?小结小结:知道三角形的两个内角和任

6、何一边,利:知道三角形的两个内角和任何一边,利 用正弦定理可以求出三角形中的其它元素。用正弦定理可以求出三角形中的其它元素。1.1.1 正弦定理正弦定理3.定理的应用举例定理的应用举例变式:变式:若将若将a=2 改为改为c=2,结果如何?,结果如何?例 2、 已知a=16, b= , A=30 .解三角形已知两边和其中一边已知两边和其中一边的对角的对角,求其他边和角求其他边和角解:由正弦定理BbAasinsin得231630sin316sinsinaAbB所以60,或120当 时60C=90.32cC=30.16sinsinACac316当120时B16300ABC1631683变式: a=3

7、0, b=26, A=30,解三角形300ABC2630解:由正弦定理BbAasinsin得30133030sin26sinsinaAbB所以25.70, 或180025.70=154.30由于154.30 +3001800故B只有一解(如图)C=124.30,57.49sinsinACac30137 .25sin小结小结:已知两边和其中一边的对角,可以求出已知两边和其中一边的对角,可以求出三角形的其他的边和角。三角形的其他的边和角。4.基础练习题基础练习题1.1.1 正弦定理正弦定理00(1)45 ,2,2,10 3(2)60 ,4,3ABCAabBABCAabB在中,已知 求在中,已知求B

8、=300无解无解5.探究课题引入时问题探究课题引入时问题(2)的解决方法的解决方法ABCbc1.1.1 正弦定理正弦定理bsinbsin AB =AB =sin(sin( + + ) ) 正弦定理正弦定理 主要应用主要应用 sinsinsinabcABC (1) 已知两角及任意一边,可以求出其他两边已知两角及任意一边,可以求出其他两边和另一角;和另一角; (2)已知两边和其中一边的对角,可以求出三已知两边和其中一边的对角,可以求出三角形的其他的边和角。角形的其他的边和角。(此时可能有一解、二解、此时可能有一解、二解、无解)无解) 1.1.1 正弦定理正弦定理小结小结:课后探究课后探究:sinsinsinabckABC那么这个那么这个k值是什么呢值是什么呢?你能用一个和三角形有你能用一个和三角形有关的量来表示吗关的量来表示吗?作业:作业:P10 2 (1)你还可以用其它方法证明)你还可以用其它方法证明正弦定理吗?正弦定理吗?(2)

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|