ImageVerifierCode 换一换
格式:PPT , 页数:20 ,大小:134KB ,
文档编号:2711239      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2711239.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(人工智能(Nilson版-英文课件)-Chap15-谓词演算.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

人工智能(Nilson版-英文课件)-Chap15-谓词演算.ppt

1、The Predicate CalculusChapter 152OutlinenMotivationnThe Language and Its SyntaxnSemanticsnQuantificationnSemantics of QuantifiersnPredicate Calculus as a Language for Representing Knowledge315.1 MotivationnPropositional calculusnExpressional limitationnAtoms have no internal structures.nFirst-order

2、predicate calculusnhas names for objects as well as propositions.nSymbolsnObject constantsnRelation constantsnFunction constantsnOther constructsnRefer to objects in the worldnRefer to propositions about the world4The Language and its SyntaxnComponentsnInfinite set of object constantsnAa, 125, 23B,

3、Q, John, EiffelTowernInfinite set of function constantsnfatherOf1, distanceBetween2, times2nInfinite set of relation constantsnB173, Parent2, Large1, Clear1, X114nPropositional connectivesnDelimitersn(, ), , ,(separator) , , ,5The Language and its SyntaxnTermsnObject constant is a termnFunctional ex

4、pressionnfatherOf(John, Bill), times(4, plus(3, 6), SamnwffsnAtomsnRelation constant of arity n followed by n terms is an atom (atomic formula)nAn atom is a wff.nGreaterthan(7,2), P(A, B, C, D), QnPropositional wffP Sam)hn,Brother(Jo 5,4)Lessthan(1 n(7,2)Greatertha615.3 SemanticsnWorldsnIndividualsn

5、ObjectsnConcrete examples: Block A, Mt. Whitney, Julius Caesar, nAbstract entities: 7, set of all integers, nFictional/invented entities: beauty, Santa Claus, a unicorn, honesty, nFunctions on individualsnMap n tuples of individuals into individualsnRelations over individualsnProperty: relation of a

6、rity 1 (heavy, big, blue, )nSpecification of n-ary relation: list all the n tuples of individuals715.3 SemanticsnInterpretationsnAssignment: maps the followingsnobject constants into objects in the worldnn-ary constants into n-ary functionsnn-ary relation constants into n-ary relationsncalled denota

7、tions of corresponding predicate-calculus expressionsnDomainnSet of objects to which object constant assignments are madenTrue/False valuesFigure 15.1 A Configuration of Blocks8Table 15.1 A Mapping between Predicate Calculus and the WorldDetermination of the value of some predicate-claculus wffs On(

8、A,B) is False because is not in the relation On. Clear(B) is True because is in the relation Clear. On(C,F1) is True because is in the relation On. On(C,F1) On(A,B) is True because both On(C,F1) and On(A,B) are TruePredicate CalculusABCF1OnClearWorldABCFloorOn=, , Clear=915.3 SemanticsnModels and Re

9、lated NotionsnAn interpretation satisfies a wffnwff has the value True under that interpretationnModel of wffnAn interpretation that satisfies a wffnValid wffnAny wff that has the value True under all interpretationsninconsistent/unsatisfiable wffnAny wff that does not have a modeln logically entail

10、s ( |=)nA wff has value True under all of those interpretations for which each of the wffs in a set has value TruenEquivalent wffsnTruth values are identical under all interpretations1015.3 SemanticsnKnowledgenPredicate-calculus formulasnrepresent knowledge of an agentnKnowledge base of agentnSet of

11、 formulasnThe agent knows = the agent believes Figure 15.2 Three Blocks-World Situations1115.4 QuantificationnFinite domainnClear(B1) Clear(B2) Clear(B3) Clear(B4)nClear(B1) Clear(B2) Clear(B3) Clear(B4)nInfinite domainnProblems of long conjunctions or disjunctions impracticalnNew syntactic entities

12、nVariable symbolsnconsist of strings beginning with lowercase lettersntermnQuantifier symbols give expressive power to predicate-calculusn: universal quantifiern: existential quantifier1215.4 Quantificationn : wffn: wff within the scope of the quantifiern: quantified variablenClosed wff (closed sent

13、ence)nAll variable symbols besides in are quantified over in nPropertynFirst-order predicate calculinrestrict quantification over relation and function symbols)( ,)()(),()()()( ),()()(xfSyxREyxPxxRxPAx)()(),()()(xyyxyxxyyx1315.5 Semantics of QuantifiersnUniversal Quantifiersn()() = Truen() is True f

14、or all assignments of to objects in the domainnExample: (x)On(x,C) Clear(C)? in Figure 15.2nx: A, B, C, Floorninvestigate each of assignments in turn for each of the interpretationsnExistential Quantifiersn()() = Truen() is True for at least one assignments of to objects in the domain1415.5 Semantic

15、s of QuantifiersnUseful Equivalencesn()() ()()n()() ()()n()() () ()nRules of InferencenPropositional-calculus rules of inference predicate calculusnmodus ponensnIntroduction and elimination of nIntroduction of n eliminationnResolutionnTwo important rulesnUniversal instantiation (UI)nExistential gene

16、ralization (EG)1515.5 Semantics of QuantifiersnUniversal instantiationn()() ()n(): wff with variable n: constant symboln(): () with substituted for throughout nExample: (x)P(x, f(x), B) P(A, f(A), B)nExistential generalizationn() ()()n(): wff containing a constant symbol n(): form with replacing eve

17、ry occurrence of throughout nExample: (x)Q(A, g(A), x) (y)(x)Q(y, g(y), x)1615.6 Predicate Calculus as a Language for Representing KnowledgenConceptualizationsnPredicate calculusnlanguage to express and reason the knowledge about real worldnrepresented knowledge: explored throughout logical deductio

18、nnSteps of representing knowledge about a worldnTo conceptualize a world in terms of its objects, functions, and relationsnTo invent predicate-calculus expressions with objects, functions, and relationsnTo write wffs satisfied by the world: wffs will be satisfied by other interpretations as well1715

19、.6 Predicate Calculus as a Language for Representing KnowledgenUsage of the predicate calculus to represent knowledge about the world in AInJohn McCarthy (1958): first usenGuha & Lenat 1990, Lenat 1995, Lenat & Guha 1990nCYC projectnrepresent millions of commonsense facts about the worldnNilsson 199

20、1: discussion of the role of logic in AInGenesereth & Nilsson 1987: a textbook treatment of AI based on logic1815.6 Predicate Calculus as a Language for Representing KnowledgenExamplesnExamples of the process of conceptualizing knowledge about a worldnAgent: deliver packages in an office buildingnPa

21、ckage(x): the property of something being a packagenInroom(x, y): certain object is in a certain roomnRelation constant Smaller(x,y): certain object is smaller than another certain objectn“All of the packages in room 27 are smaller than any of the packages in room 28”),Smaller()28,Inroom()27,Inroom(

22、)Package()Package(),(yxyxyxyx1915.6 Predicate Calculus as a Language for Representing Knowledgen“Every package in room 27 is smaller than one of the packages in room 29”nWay of stating the arrival time of an objectnArrived(x,z)nX: arriving objectnZ: time interval during which it arrivedn“Package A a

23、rrived before Package B”nTemporal logic: method of dealing with time in computer science and AI),Smaller()28,Inroom()27,Inroom()Package()Package()(),Smaller()28,Inroom()27,Inroom()Package()Package()(yxyxyxyxyxyxyxxyz2)Before(z1,z2)Arrived(B,z1)d(A,z2)Arrivez1,(2015.6 Predicate Calculus as a Language

24、 for Representing KnowledgenDifficult problems in conceptualizationn“The package in room 28 contains one quart of milk”nMass nounsnIs milk an object having the property of being whit?nWhat happens when we divide quart into two pints?nDoes it become two objects, or does it remain as one?nExtensions to the predicate calculusnallow one agent to make statements about the knowledge of another agentn“Robot A knows that Package B is in room 28”

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|