1、 第一章 通用变频器的基本工作原理 第第1章章 通用变频器的基本工作原理通用变频器的基本工作原理 1.1 交直交变频器的基本工作原理交直交变频器的基本工作原理 1.2 交交变频器的工作原理交交变频器的工作原理 1.3 变频器的分类变频器的分类 1.4 通用变频器的面板结构通用变频器的面板结构 1.5 通用变频器的接线端子通用变频器的接线端子 第一章 通用变频器的基本工作原理 第第1章章 通用变频器的基本工作原理通用变频器的基本工作原理 变频器的功能就是将频率、电压都固定的交流电源变成频率、电压都连续可调的三相交流电源。按照变换环节有无直流环节可以分为交交变频器和交直交变频器。 1.1 交直交变
2、频器的基本工作原理交直交变频器的基本工作原理 交直交变频器就是先把频率、电压都固定的交流电整流成直流电,再把直流电逆变成频率、电压都连续可调的三相交流电源。由于把直流电逆变成交流电的环节比较容易控制,并且在电动机变频后的特性方面比其它方法具有明显的优势,所以通用变频器一般采用交直交变频器。 第一章 通用变频器的基本工作原理VT1VT3VT5VT2VT4VT6OCAB整流电路 滤波电路 逆变电路变频器的主电路UdZA 三相电源ZBZC 1.1.1 交直交变频器的主电路交直交变频器的主电路 交直交变频器的主电路如图所示。 第一章 通用变频器的基本工作原理1、整流电路、整流电路交直部分交直部分 整流
3、电路通常由二极管或可控硅构成的桥式电路组成。根据输入电源的不同,分为单相桥式整流电路和三相桥式整流电路。我国常用的小功率的变频器多数为单相220V输入,较大功率的变频器多数为三相380V(线电压)输入。 由二极管构成的桥式整流电路的输出电压的平均值Ud不变,而由可控硅构成的桥式整流电路的输出电压的平均值Ud连续可调。 第一章 通用变频器的基本工作原理 2、中间环节、中间环节滤波电路滤波电路 根据贮能元件不同,可分为电容滤波和电感滤波两种。由于电容两端的电压不能突变,流过电感的电流不能突变,所以用电容滤波就构成电压源型变频器,用电感滤波就构成电流源型变频器。 3、逆变电路、逆变电路直交部分直交部
4、分 逆变电路是交直交变频器的核心部分,其中6个三极管按其导通顺序分别用 VT1VT6表示,与三极管反向并联的二极管起续流作用。 按每个三极管的导通电角度又分为120导通型和180导通型两种类型。 第一章 通用变频器的基本工作原理(1)120导电型导电型 负载Z接成Y型(见右图),给6个三极管的基极加上合适的控制电压,使其按下表的要求导通,设三相负载完全对称,即ZAZB ZCZ,并设逆变器的换相在瞬间完成,忽略功率器件的管压降。 第一章 通用变频器的基本工作原理(1)120导电型导电型 在060范围内VT1、VT6导通,其等效电路如图所示。由图可以求得: 根据UA、UB、UC可以求得各线电压:2
5、dAOAUUU2dBOBUUU0COCUUdddBAAUUUUUU)2(2B202BCddCBUUUUU220ddACCAUUUUU 第一章 通用变频器的基本工作原理 在60120范围内VT1、VT2导通,其等效电路如图所示。由图可以求得: 根据UA、UB、UC可以求得各线电压:2dAOAUUU0BOBUU2dCOCUUU202BddBAAUUUUU2)2(0BCddCBUUUUUdddACCAUUUUUU22 第一章 通用变频器的基本工作原理 同理,可以求得其它各范围的相电压和线电压,根据这些电压可以画出相电压和线电压的波形图如图所示。 第一章 通用变频器的基本工作原理 若把 负载Z接成型(
6、见右图),6个三极管仍按上述的要求导通。则在060范围内 VT1、VT6导通的等效电路如右下图所示。由图可以求得线电压为 :dABUU 2dCABCUUUdABUU2dCABCUUU 第一章 通用变频器的基本工作原理 同理,可以求得其它各范围的线电压,画出线电压的波形图如下图所示: 第一章 通用变频器的基本工作原理(2)180导通型导通型 若把负载Z按右图接成Y型,6个三极管按下表的要求导通180,则在各范围内都有3个三极管同时导通。 第一章 通用变频器的基本工作原理 在060范围内VT1、VT5、VT6导通,其等效电路如图1.1.8所示。由图可以求得相电压为:dAOCAUUUU31dBOBU
7、UU32 根据UA、UB、UC可以求得各线电压:dddBAAUUUUUU)32(31BdddCBUUUUUU3132BC03131ddACCAUUUUU 第一章 通用变频器的基本工作原理 同理,可以求得其它各范围的相电压和线电压,根据这些电压可以画出相电压和线电压的波形图如图所示。 第一章 通用变频器的基本工作原理 若把负载Z接成型,6个三极管仍按上述要求导通180,读者可自行分析负载两端的电压波形,不再赘述。 由上述可以看到,逆变电路的输出电压为阶梯波,虽然不是正弦波,却是彼此相差120的交流电压,即实现了从直流电到交流电的逆变。输出电压的频率取决于逆变器开关器件的切换频率,达到了变频的目的
8、。 实际逆变电路除了基本元件三极管和续流二极管外,还有保护半导体元件的缓冲电路,三极管也可以用门极可关断晶闸管代替。 第一章 通用变频器的基本工作原理1.1.2 SPWM控制技术原理控制技术原理 我们期望通用变频器的输出电压波形是纯粹的正弦波形,但就目前技术而言,还不能制造功率大、体积小、输出波形如同正弦波发生器那样标准的可变频变压的逆变器。目前技术很容易实现的一种方法是:逆变器的输出波形是一系列等幅不等宽的矩形脉冲波形,这些波型与正弦波等效。 第一章 通用变频器的基本工作原理 12t12ttUmsint单极式SPWM电压波形un 第一章 通用变频器的基本工作原理等效的原则是每一区间的面积相等
9、。如果把一个正弦半波分作n等份(图中n等于12,实际n要大得多),然后把每一等份的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,脉冲幅值不变,宽度为t,各脉冲的中点与正弦波每一等份的中点重合。这样,有n个等幅不等宽的矩形脉冲组成的波形就与正弦波的正半周等效,称为SPWM(Sinusoidal Pulse Width Modulation 正弦波脉冲宽度调制)波形。同样,正弦波的负半周也可以用同样的方法与一系列负脉冲等效。这种正、负半周分别用正、负半周等效的SPWM波形称为单极式SPWM波形。 第一章 通用变频器的基本工作原理 虽然SPWM电压波形与正弦波相差甚远,但由于变频器
10、的负载是电感性负载电动机,而流过电感的电流是不能突变的,当把调制频率为几kHz的SPWM电压波形加到电动机时,其电流波形就是比较好的正弦波了。 第一章 通用变频器的基本工作原理 1.1.3 通用变频器电压与频率的关系通用变频器电压与频率的关系 UfnPL额定电压基频电压与频率之间的关系 为了充分利用电机铁心,发挥电机转矩的最佳性能,适合各种不同种类的负载,通用变频器电压与频率之间的关系如右图所示。 第一章 通用变频器的基本工作原理1、基频以下调速、基频以下调速在基频(额定频率)以下调速,电压和频率同时变化,但变化的曲线不同,需要在使用变频器时,根据负载的性质设定。(1)曲线n 对于曲线n,U/
11、f =常数,属于恒压频比控制方式,适合于恒转矩负载。(2)曲线L 曲线L也适合于恒转矩负载,但频率为零时,电压不为零,在电机并联使用或某些特殊电机选用曲线L。(3)曲线P 曲线P适合于可变转矩负载,主要用于泵类负载和风机负载。 第一章 通用变频器的基本工作原理 2、基频以上调速、基频以上调速 在基频以上调速时,频率可以从基频往上增高,但电压U却始终保持为额定电压,输出功率基本保持不变。所以,在基频以上变频调速属于恒功率调速。 由此可见,通用变频器属于变压变频(VVVF)装置,其中VVVF是英文Variable Voltage Variable Frequency的缩写。这是通用变频器工作的最基
12、本方式,也是设计变频器时所满足的最基本要求。 第一章 通用变频器的基本工作原理1.2 交交变频器的工作原理交交变频器的工作原理 交交变频器是指无直流中间环节,直接将电网固定频率的恒压恒频(CVCF)交流电源变换成变压变频(VVVF)交流电源的变频器,因此称之为“直接”变压变频器或交交变频器,亦称周波变换器(Cycloconverter)。1.2.1 交交变频器的基本原理交交变频器的基本原理 在有源逆变电路中,若采用两组反向并联的可控整流电路,适当控制各组可控硅的关断与导通,就可以在负载上得到电压极性和大小都改变的直流电压。若再适当控制正反两组可控硅的切换频率,在负载两端就能得到交变的输出电压,
13、从而实现交交直接变频。 第一章 通用变频器的基本工作原理 单相输出的交交变频器如图所示。它实质上是一 套三相桥式无环流反并联的可逆装置。正、反向两组晶阐管按一定周期相互切换。正向组工作时,反向组关断,在负载上得到正向电压;反向组工作时,正向组关断,在负载上得到反向电压。工作晶阐管的关断通过交流电源的自然换相来实现。这样,在负载上就获得了交变的输出电压uo。 第一章 通用变频器的基本工作原理 要得到正弦波输出,就必须在每一组整流器导通期间不断改变其控制角。例如,在正向组导通的半个周期中,使控制角按一定规律从/2(对应于平均电压Uo=0)逐渐减小到0(对应于平均电压Uo最大),然后再逐渐增加到/2
14、 ,即使在/20/2 之间变化,则整流的平均输出电压Uo就由0变到最大值再变到0,呈正弦规律变化,输出端接有电感负载的交交变频器的输出电压和电流波形见下图: 第一章 通用变频器的基本工作原理 从上图可见,一个周期的波形可以分为6段。 (1) uo0,io0,变频器工作于第二象限,反向组逆变。 (2) 电流过0,无环流“死时”。 (3) uo0,io0,变频器工作于第一象限,正向组整流。 (4)uo0,io0变频器工作于第四象限,正向组逆变。 (5) 电流过0,无环流“死时”。 (6) uo0,io0,变频器工作于第三象限,反向组整流。 输出电压和电流之间的位相差由负载性质决定。如果 /2,能量
15、从电网流向负载;如果 /2 ,能量从负载流向电网;对于电阻性负载 =0,负载功率因数cos =1,输出电压、电流同相,第1及第4区域不存在。 对于三相输出的交交变频器,其它两相也各用一套反并联的可逆装置,三相输出平均电压的相位依次相差2/3。 第一章 通用变频器的基本工作原理1.2.2 运行方式运行方式 交交变频器的运行方式分为无环流运行方式、自然环流运行方式和局部环流运行方式。1、无环流运行方式、无环流运行方式 下图是无环流运行方式变频器原理图。 第一章 通用变频器的基本工作原理 采用无环流运行运行方式的优点是系统简单,成本较低。缺点是决不允许两组整流器同时获得触发脉冲而形成环流,因为环流的
16、出现将造成电源短路。因此,必须等到一组整流器的电流完全消失后,另一组整流器才允许导通。切换延时是必不可少的,而且延时较长。一般情况下这种结构能提供的输出电压的最高频率只是电网频率的三分之一或更低。 输出的交流电流是由正向桥和反向桥轮换提供,在进行换桥时,由于普通晶闸管在触发脉冲消失且正向电流完全停止后,还需要1050s的时间才能够恢复正向阻断能力,所以在测得电流真正为零后,还需延时5001500s才允许另一组晶闸管导通。因此这种变频器提供的交流电流在过零时必然存在着一小段死区。延时时间愈长,产生环流的可能性愈小,系统愈可靠,这种死区也愈长。在死区期间电流等于0,这段时间是无效时间。 第一章 通
17、用变频器的基本工作原理 无环流控制的重要条件是准确而且迅速地检测出电流过零信号。不管主回路的工作电流是大是小,零电流检测环节都必须能对主回路的电流作出正确的响应。过去的零电流检测在输入侧使用交流电流互感器,在输出侧使用直流电流互感器,它们都既能保证电流检测的准确性,又能使主回路和控制回路之间得到可靠的隔离。 近几年,由于光电隔离器件的发展和广泛应用,已研制成由光电隔离器组成的零电流检测器,性能更加可靠。 第一章 通用变频器的基本工作原理2、自然环流运行方式、自然环流运行方式 如果同时对两组整流器施加触发脉冲,正向组的触发角P与反向组的触发角N之间保持P +N =,这种控制方式称为自然环流运行方
18、式。为限制环流,在正、反向组间接有抑制环流的电抗器。这种运行方式的交-交变频器,除有因纹波电压瞬时值不同而引起的环流外,还存在着环流电抗器在交流输出电流作用下引起的“自感应环流。如下页图所示。 图中忽略了因纹波电压引起的环流。产生自感应环流的根本原因是因为交-交变频器的输出电流是交流,其上升和下降在环流电抗器上引起自感应电压,使两组的自感应电压产生不平衡,从而构成两倍电流输出频率的低次谐波脉动电流。 第一章 通用变频器的基本工作原理自感应环流原理图(a)输出电流 (b)正组输出电流 (c)负组输出电流(d) 自感应环流 (e) 等效电路ioiPiN0000iC(a)(b)(c)(d)tIIiO
19、OOPsin22tIiOOOsintIIiOOONsin22tIIiOOOPsin22tIIiONOOsin22tIiOOOsintIIiOOCOsin22tIIiOOCOsin22(e)正组负组负载tttt 第一章 通用变频器的基本工作原理 根据分析可知,自感应环流的平均值可达总电流平均值的57%,这显然加重了整流器的负担。因此,完全不加控制的自然环流运行方式只能用于特定的场合。由上图可见,自感应环流在交流输出电流靠近零点时出现最大值,这对保持电流连续是有利的。另外在有环流运行方式中,负载电压为环流电抗器的中点电压。由于两组输出电压瞬时值中一些谐波分量抵消了,故输出电压的波形较好。 第一章
20、通用变频器的基本工作原理3、局部环流运行方式、局部环流运行方式 把无环流运行方式和有环流运行方式相结合,即在负载电流有可能不连续时以有环流方式工作,而在负载电流连续时以无环流方式工作。这样的运行方式既可以使控制简化,运行稳定,改善输出电压波形的畸变,又不至于使电流过大,这就是局部环流运行方式的优点。 下页图是局部环流运行方式的控制方案简单原理图。在负载电流大于某一规定值时,只允许一组整流器工作,即无环流运行,而在负载电流小于某一规定值(临界连续电流)时,则使两组整流器同时工作,即有环流运行。 第一章 通用变频器的基本工作原理 第一章 通用变频器的基本工作原理1.2.3 主电路形式主电路形式 交
21、交变频器主要用于大容量交流电动机调速,几乎没有采用单相输入的,主要采用三相输入。主回路有三脉波零式电路(有18个晶闸管)、三脉波带中点三角形负载电路(有12个晶闸管)、三脉波环路电路(有9个晶闸管)、六脉波桥式电路(有36个晶闸管)、十二脉波桥式电路等多种。 用的最多的是六脉波桥式电路,又分为分离负载桥式电路和输出负载Y联结两种型式。 第一章 通用变频器的基本工作原理 第一章 通用变频器的基本工作原理 第一章 通用变频器的基本工作原理1.3 变频器的分类变频器的分类1.3.1 按变换的环节分类按变换的环节分类1、交交变频器、交交变频器 直接将电网频率和电压都固定的交流电源变换成频率和电压都连续
22、可调的交流电源。优点:是没有中间环节,变换效率高。缺点:是连续可调的频率范围比较窄,且只能在电 网的固定频率以下变化。一般为电网固定频率的 ,主 要用于电力牵引等容量较大的低速拖动系统中。2、交、交直直交变频器交变频器 先把频率固定的交流电整流成直流电,再把直流电逆变成频率连续可调的三相交流电。 交直交变频器频率调节范围宽,变换的环节容易实现,目前广泛采用。通用变频器一般都采用交直交方式。2131 第一章 通用变频器的基本工作原理1.3.2 按直流环节的储能方式分类按直流环节的储能方式分类1、电压源型变频器、电压源型变频器 在交直交变压变频装置中,当中间直流环节采用大电容滤波时,直流电压波形比
23、较平直,在理想情况下是个内阻抗为零的恒压源,叫做电压源型变频器,如图(a)所示。2、电流源型变频器、电流源型变频器 当交直交变压变频装置的中间直流环节采用大电感滤波时,直流电流波形比较平直,对负载来说基本上是一个电流源,输出交流电流是矩形波或阶梯波,这类变频装置叫做电流源型变频器,如图(b)所示。RSTUVW(b) 电流源型变频器RSTUVW(a) 电压源型变频器C 第一章 通用变频器的基本工作原理 有的交一交变压变频装置用电抗器将输出电流强制变成矩形波或阶梯波,具有电流源的性质,它也是电流源型变频器。 注意几点:从主电路上看,电压源型变频器和电流源型变频器的区别仅在于中间直流环节滤波器的形式
24、不同,但是这样一来,却造成两类变频器在性能上相当大的差异,主要表现如下: 第一章 通用变频器的基本工作原理(1) 无功能量的缓冲无功能量的缓冲 对于变压变频调速系统来说,变频器的负载是异步电机,属于感性负载,在中间直流环节与电机之间,除了有功功率的传送外,还存在无功功率的交换。逆变器中的电力电子开关器件无法储能,无功能量只能靠直流环节中作为滤波器的储能元件来缓冲,使它不致影响到交流电网。因此也可以说,两类变频器的主要区别在于用什么储能元件(电容器或电抗器)来缓冲无功能量。 第一章 通用变频器的基本工作原理 (2) 回馈制动回馈制动 如果把不可控整流器改为可控整流器,虽然电力电子器件具有单向导电
25、性,电流不能反向,而可控整流器的输出电压是可以迅速反向的,因此电流源型变压变频调速系统容易实现回馈制动,从而便于四象限运行,适用于需要制动和经常正、反转的机械。与此相反,采用电压源型变频器的调速系统要实现回调制动和四象限运行却比较困难,因为其中间直流环节有大电容钳制着电压,使之不能迅速反向,而电流也不能反向,所以在原装置上无法实现回馈制动。必须制动时,只好采用在直流环节中并联电阻的能耗制动,或与可控整流器反并联设置另一组反向整流器,工作在有源逆变状态,以通过反向的制动电流,而维持电压极性不变,实现回馈制动。这样,设备就复杂了。 第一章 通用变频器的基本工作原理 (3) 调速时的动态响应调速时的
26、动态响应 由于交直交电流源型变压变频装置的直流电压可以迅速改变,所以由它供电的调速系统动态响应比较快,而电压源型变压变频调速系统的动态响应就慢得多。(4) 适用范围适用范围 由于滤波电容上的电压不能发生突变,所以电压源型变频器的电压控制响应慢,适用于作为多台电机同步运行时的供电电源但不要求快速加减速的场合。电流源型变频器则相反,由于滤波电感上的电流不能发生突变,所以电流源型变频器对负载变化的反应迟缓,不适用于多电机传动,而更适合于一台变频器给一台电机供电的单电机传动,但可以满足快速起动、制动和可逆运行的要求。 第一章 通用变频器的基本工作原理1.3.3 按控制方式分类按控制方式分类1、U/f控
27、制变频器控制变频器 U/f控制变频器的方法是在改变频率的同时控制变频器的输出电压,通过使U/f(电压和频率的比)保持一定或按一定的规律变化而得到所需要的转矩特性。采用U/f控制的变频器结构简单、成本低,多用于要求精度不是太高的通用变频器。2、转差频率控制变频器、转差频率控制变频器 转差频率控制方式是对U/f控制的一种改进。这种控制需要由安装在电动机上的速度传感器检测出电动机的转速,构成速度闭环。速度调节器的输出为转差频率,而变频器的输出频率则有电动机的实际转速与所需转差频率之和决定。由于通过控制转差频率来控制转矩和电流,与U/f控制相比,其加减速特性和限制过电流的能力得到提高。 第一章 通用变
28、频器的基本工作原理3、矢量控制变频器、矢量控制变频器 矢量控制是一种高性能异步电动机控制方式,它的基本思路是将电动机的定子电流分为产生磁场的电流分量(励磁电流)和与其垂直的产生转矩的电流分量(转矩电流),并分别加以控制。由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即定子电流的矢量,因此这种控制方式被成为矢量控制方式。4、直接转矩控制变频器、直接转矩控制变频器 直接转矩控制与矢量控制不同,它不是通过控制电流、磁链等量来间接控制转矩,而是把转矩直接作为被控矢量来控制。其特点为转矩控制是控制定子磁链,并能实现无传感器测速。 第一章 通用变频器的基本工作原理1.3.4 按功能分类按
29、功能分类1、恒转矩变频器、恒转矩变频器 变频器的控制对象具有恒转矩特性,在转速精度及动态性能方面要求一般不高。当用变频器进行恒转矩调速时,必须加大电动机和变频器的容量,以提高低速转矩。主要用于挤压机、搅拌机、传送带、提升机等。2、平方转矩变频器、平方转矩变频器 变频器的控制对象在过载能力方面要求不高,由于负载转矩与转速的平方成正比 (TLn2),所以低速运行时负载较轻,并具有节能的效果。主要用于风机和泵类负载。 第一章 通用变频器的基本工作原理1.3.5 按用途分类按用途分类1、通用变频器、通用变频器 通用变频器是指能与普通的异步电动机配套使用,能适合于各种不同性质的负载,并具有多种可供选择功
30、能的变频器。 一般用途多数使用通用变频器,但在使用之前必须根据负载性质、工艺要求等因素对变频器进行详细的设置。2、高性能专用变频器、高性能专用变频器 高性能专用变频器主要用于对电动机的控制要求较高的系统。与通用变频器相比,高性能专用变频器大多数采用矢量控制方式,驱动对象常是变频器生产厂家指定的专用电动机。3、高频变频器、高频变频器 在超精度加工和高性能机械中,通常要用到高速电动机。为了满足这些高速电动机的驱动要求,出现了PAM(脉冲幅值调制)控制方式的高频变频器,其生产频率可达3kHz。 第一章 通用变频器的基本工作原理1.4 通用变频器的面板结构通用变频器的面板结构 尽管生产变频器的厂家不同
31、,型号各异,但其面板结构大致相同。下图是施耐德Altivar31变频器的面板结构。主要部分的作用为:.ESCENTSTOPRESETRUNRUNEERCANAltivar31红色LED直流总线接通选择以前的菜单或参数或增大显示值选择下一菜单或参数,或减小显示值给定电位器,如果CtL菜单中的Fr1参数设置为AIP时激活RUN按键,电动机正向模式接通控制,如果I/O菜单中的tCC参数设置为LOC时激活2个CAN总线接通状态LED退出菜单或参数,或清除显示值,以恢复以前的显示值进入某一菜单或参数,或对显示参数或显示值进行储存STOP/RESET键用于故障复位可用于控制电动机停车,如果I/O菜单中的参
32、数tCC没有设置为LOC,为斜坡停车模式,但如果过程中有注入制动,就会产生自由停车Altivar31变频器操作面板4个7段显示器 第一章 通用变频器的基本工作原理 Altivar31变频器的面板主要部分的作用为: 1、给定电位器、给定电位器 如果CtL菜单中的Fr1参数或Fr2参数设置为AIP时激活,此时通过调节该电位器升降速。2、键键 在选择菜单或参数时,选择上面的菜单或参数;调整参数时,增大显示值。3、键键 在选择菜单或参数时,选择下一菜单或参数;调整参数时,减小显示值。4、ESC键键 退出菜单或参数,或清除显示值,以恢复以前的显示值。在设置参数时,如果不希望对新设置的参数进行储存,而保留
33、以前的数值,按此键返回即可。 第一章 通用变频器的基本工作原理5、ENT键键 在设置菜单或参数时,按ENT键进入某一菜单或参数;设置完毕,对显示参数或显示值进行储存,此时要按住ENT键直至显示参数或数值闪烁为止,而有些参数或数值需要按住ENT键2秒以上才能储存。6、RUN键键 如果设置为本机控制(I/O菜单中的tCC参数设置为LOC),按一下RUN键,电动机正向模式运行;如果设置为2线或3线控制该键不起作用。7、STOP/RESET键键 如果设置为本机控制,在变频器运行状态,用该键停车;如果设置为2线或3线控制,当CtL菜单中的PSt参数设置为yES时该键具有优先停车权, PSt参数设置为nO
34、时该键不起作用;在变频器非运行状态,出现故障且已修复时,用该键复位。 第一章 通用变频器的基本工作原理8、液晶显示器、液晶显示器 4个7段显示,可显示的内容主要有: (1)在参数设置时,显示菜单或参数。有些菜单下面还有二级菜单,菜单下面是参数。菜单后面带“”,参数不带“”。如“CtL-”是菜单,而“ACC”是参数,“FunPSSSP2 10Hz”说明“FUn”是一级菜单,“PSS”是二级菜单,“SP2” 是参数,参数 “SP2”设置为10Hz。 (2)变频器运行时,显示运行状态,可显示电机频率、电机电流、电机功率、线电压、变频器热态等,具体显示内容根据需要设置。 (3)变频器停止时,显示停机状
35、态。 (4)出现故障时,显示故障代码。 第一章 通用变频器的基本工作原理显示符号实际字母或数字显示符号实际字母或数字显示符号实际字母或数字ALybM2Cn3dO或数字04EP6Fq7GS或数字58Hr9I或数字1tJU 显示符号与实际字母或数字对照显示符号与实际字母或数字对照 第一章 通用变频器的基本工作原理 从上表可以看出,显示符号 、 、 既代表数字,也代表字母,需要根据菜单或参数确定是字母还是数字。即使确定错了,也不会引起差错,因为不管是字母还是数字,都是一个相同的菜单或参数。如只有“PSS-”子菜单,不存在“PS5-”子菜单;只有“SP5”参数,不存在“SPS”参数。 第一章 通用变频
36、器的基本工作原理 1.5 通用变频器的接线端子通用变频器的接线端子1.5.1 变频器主端子变频器主端子 变频器的输入端分为三相输入和单相输入两种,而输出端均为三相输出,Alivar31变频器主端子如下图所示。R/L1 S/L2 T/L3PO PA/+ PB PC/- U/T1 V/T2 W/T3 三相输入变频器主端子R/L1 S/L2 PO PA/+ PB PC/- U/T1 V/T2 W/T3 单相输入变频器主端子 第一章 通用变频器的基本工作原理 变频器在出厂时,已将“PO”和“PA/+”两个端子用短路片接在一起,通常不能断开,但在使用外接电抗器时,拆下短路片接电抗器。“PB”和“PA/+
37、”接内部制动电阻,需要使用外接制动电阻时,应先拆下内部接线,这两个端子接制动电阻。一般情况下,“PO”、“PA/+”、“PB”、 “PC/-”4个端子不需要接线,且出厂时的接线也不要拆。 第一章 通用变频器的基本工作原理变频器的主端子功能端端 子子功功 能能备备 注注接地端子 接地线,不能与电源零线相接R/L1、S/L2单相电源对于单相输入变频器R/L1、S/L2、T/L3三相电源对于三相输入变频器,不分相序PO直流母线“”极性,接外部电抗器出厂时已短接PA/+接制动电阻、电抗器PB接制动电阻PC/-直流母线“”极性U/T1、 V/T2 、W/T3接三相异步电动机 有相序之分 第一章 通用变频
38、器的基本工作原理 不同品牌的变频器的主电路端子基本相同。变频器主电路的接线包括接工频电网的输入端(三相R/L1、S/L2、T/L3,单相R/L1、S/L2)和接电动机的电压、频率连续可调的输出端(U/T1、V/T2、W/T3),在济南星科的实验台中,变频器单相输入、三相输出,QS就是操作台上的变频器开关,输入端已接好。变频器的输出端和电动机接线端均引出在实验台的右上角,用跨接线接通即可,如图所示。变频器输出变频器输出 异步电动机异步电动机U V WU V W 第一章 通用变频器的基本工作原理 U V WM2QS变频器变频器 R S L N(a) 三相输入(b) 单相输入变频器主电路的连接 U
39、V WM2QS变频器变频器 R S T L1 L2 L3 实际上,最常用的接线图如右图所示,其中图(a)为三相输入,图(b)为单相输入,QS为空气开关。 特别注意:特别注意:变频器的输变频器的输出端只能接电动机,若把出端只能接电动机,若把三相交流电源直接接在变三相交流电源直接接在变频器上,会损坏变频器!频器上,会损坏变频器! 第一章 通用变频器的基本工作原理1.5.2 变频器控制端子变频器控制端子 Altivar31变频器控制端子及接线如下图所示。R1A R1C R1B R2A R2CCLI LI1 LI2 LI3 LI4 LI5 LI6 24V+10V AI1 COM AI3 AI2 AOV
40、 AOC模拟电流模拟电压模拟电压输出模拟电流输出 第一章 通用变频器的基本工作原理 在实验台中各控制端子均已引出到实验台的面板上。此外在变频器的下方还有6个按钮开关,供6个逻辑输入端使用。这些按钮带自锁功能,只接了1个触点,按下接通,弹起断开。 逻辑输入端的触点可以是按钮,但用得更多的是中间继电器、交流接触器的触点或其它低压电器的触点,也可以是PLC输出触点。 施耐德Altivar31变频器的模拟输入、模拟输出的公共端都是COM,逻辑输入的公共端CLI出厂时已经与COM接在一起。而许多其它品牌的变频器各部分的公共端子不相同。使用时特别注意。 第一章 通用变频器的基本工作原理 各逻辑输入端子经触
41、点与24V相接,这实际上是变频器内部逻辑输入开关打在SINK位置,如图(a)所示。我们也可以把逻辑输入端子经触点与地短接,这时只需将开关打在SOURCE位置即可,如图(c)所示。逻辑输入开关也可以打在中间CLI位置,如图(b),此时变频器的CLI端子必须接线。COM +24 CLI LI1 LI2 LI3 LI4 LI5 LI6SINKCLISOURCE CLI接COM(0V)(出厂设置)COM +24 CLI LI1 LI2 LI3 LI4 LI5 LI6CLI“悬空”COM +24 CLI LI1 LI2 LI3 LI4 LI5 LI6CLI接24逻辑输入开关的位置SINKCLISOURC
42、E SINKCLISOURCE (a)(b)(c) 第一章 通用变频器的基本工作原理本章小结 本章简单介绍了交直交变频器和交交变频器的工作原理、变频器的分类、通用变频器的面板结构和接线端子。 交直交变频器的主电路可以分为整流电路、滤波电路、逆变电路三部分,逆变电路是交直交变频器核心部分,由6个三极管或门极可关断晶闸管加相应的辅助电路组成,可分为120导通型和180导通型两种类型,只要在三极管的基极或门极可关断晶闸管的门极上加合适的电压,就很容易实现从直流电到阶梯波交流电或矩形波交流电的转变。 第一章 通用变频器的基本工作原理 要矩形波使交流电能够控制电动机的运行,必须用正弦波对矩形波的宽度进行
43、调制。这样的波形称为SPWM波形。交直交通用变频器的输出电压波形都是SPWM波,当接上电动机负载后,其电流波形就是比较好的正弦波了。 通用变频器基频以下调速时电压与频率同时变化。但在基频以上调速时,频率可以从基频往上增加,但电压U却始终保持为额定电压。 交-交变频器是直接将电网固定频率的交流电源变换成变压变频的交流电源的变频器,输出频率不高于输入电源频率的三分之二,主要用于大容量低速交流电动机调速。主回路有三脉波零式电路、三脉波带中点三角形负载电路、三脉波环路电路、六脉波桥式电路、十二脉波桥式电路等多种。 第一章 通用变频器的基本工作原理 变频器的种类繁多,应用非常广泛,有不同的分类方式。 不
44、同品牌变频器的面板结构大致相同,主要有键、键、ESC键、ENT键、RUN键和STOP/RESET键,虽然部分键的名称可能有所不同,但功能基本一样。 变频器的输入端分为三相输入和单相输入两种,而输出端均为三相输出。主端子主要有电源输入端(三相R/L1、S/L2、T/L3,单相R/L1、S/L2)和接电动机输出端(U/T1、V/T2、W/T3)。 不同品牌变频器的控制端子名称差别较大,而功能基本一致。主要控制端子都有用于起动和停止变频器的输入端子、用于调整频率的输入端子、逻辑输入端子、模拟量输出端子、逻辑量输出端子,内部继电器输出端子等。 第一章 通用变频器的基本工作原理2.1 通用变频器的参数设
45、置通用变频器的参数设置2.2 变频器的运行与给定方式变频器的运行与给定方式2.3 变频器的求和输入变频器的求和输入2.4 变频器的多段速度控制变频器的多段速度控制2.5 变频器的变频器的PI调节功能调节功能2.6 其它常用功能其它常用功能第第2章章 通用变频器的参数设置及功能选择通用变频器的参数设置及功能选择 第一章 通用变频器的基本工作原理 通用变频器的功能很多、适合于多种类型负载的变频器。要使变频器正常运行且充分发挥变频器的性能,就必须对变频器的参数及功能进行设置(以Altivar31变频器为例)。 2.1 通用变频器的参数设置通用变频器的参数设置 2.1.1 变频器参数设置方法变频器参数
46、设置方法 变频器的设置菜单分为一级菜单、二级菜单等,菜单后面是参数。 第一章 通用变频器的基本工作原理Altivar31变频器一级菜单的访问如图 所示: 第一章 通用变频器的基本工作原理 Altivar31变频器参数的设置如图 所示: 该图是待机(准备运行)状态开始,将FUn-PSS-SP2参数设定为15Hz,然后又返回到待机状态的操作过程。 第一章 通用变频器的基本工作原理2.1.2 常用参数及其设置常用参数及其设置 常用参数是经常使用的一些参数,主要包括以下内容(以Altivar31变频器为例): 1、上限频率、上限频率SEtHSP与下限频率与下限频率SEtLSP 上限频率是最大给定所对应
47、的频率。 下限频率是最小给定所对应的频率。 上下限频率的设定是为了限制电动机的转速,从而满足设备运行控制的要求。 第一章 通用变频器的基本工作原理2、加速时间、加速时间SEtACC与减速时间与减速时间SEtdEC 加速时间是变频器从0Hz加速到额定频率所需的时间,加速斜坡类型由FUnrPCrPt设置。 减速时间是变频器从额定频率减速到0Hz所需的时间。 设定加、减速时间必须与负载的加、减速相匹配。电机功率越大,需要的加、减速时间也越长。 对于大容量的电机,若设置加速时间太短,可能会使变频器过流跳闸;设置减速时间太短,可能会使变频器过压跳闸。 精确设置加、减速时间设备调试的主要项目之一。 第一章
48、 通用变频器的基本工作原理3、保存配置、保存配置drC(或(或I-O、CtL、FUn)SCS 对于经常使用的设置或经现场调试可行的设置,可以保存起来,在需要的时候可以恢复。但保存配置只能保存一次,再次保存时,原来保存的设置就被新保存的设置所替代。 SCS参数一被保存,就自动变为nO。 4、返回出厂设置、返回出厂设置/恢复配置恢复配置drC(或(或I-O、CtL、FUn)FCS 变频器在调试期间,可能出现由于操作不当等原因,偶尔发生功能、数据紊乱等现象,遇到这种情况可以恢复配置(FCS参数设置为rECI)或者返回出厂设置(FCS参数设置为InI),然后重新设置参数。 FCS参数一被保存,就自动变
49、为nO。 第一章 通用变频器的基本工作原理 5、电机缺相检测、电机缺相检测FLtOPL 电机缺相检测是变频器的基本功能,也是实际使用时必需的。但在济南星科的实验台中,由于配备的电机功率太小且空载,电机电流几乎等于零,变频器检测不到电机电流,认为没有接电机。所以,在实验室必须把OPL参数设置为nO(电机缺相不检测),否则变频器无法运行。但实际使用时一定把OPL参数设置为yES(电机缺相检测)。 第一章 通用变频器的基本工作原理通用变频器的功能很多,菜单及参数也很多,Altivar31变频器的一级菜单有8个,分别是设置菜单SEt、电机控制菜单drC、I-O菜单I-O、控制菜单CtL、应用功能菜单F
50、Un、故障菜单FLt、通信菜单COM、显示菜单SUP。各菜单及相应的二级菜单和参数见附录A,参数代码索引见附录B。不同类型的变频器,菜单和参数代码不同,但大致功能相同。 第一章 通用变频器的基本工作原理2.2 变频器的运行与给定方式变频器的运行与给定方式 要使变频器正常工作,要解决的问题首先是如何起动和停止变频器,其次是如何升速和降速。2.2.1 变频器的操作运行变频器的操作运行 变频器运行与停止的控制方式分为本机控制、外部端子控制和通讯给定,Altivar31变频器的外部端子控制又分为2线控制和3线控制。而多数变频器的外部端子控制有确定的控制端子,不需要设置。如富士FRN系列变频器的正转端子
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。