ImageVerifierCode 换一换
格式:PPT , 页数:65 ,大小:1.24MB ,
文档编号:2772783      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2772783.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《抛物线》复习课件PPT课件(同名126874).ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《抛物线》复习课件PPT课件(同名126874).ppt

1、2022-5-25.12022-5-25.2 1.(文文)了解抛物线的定义、几何图形和标准方程及了解抛物线的定义、几何图形和标准方程及 简单几何性质简单几何性质 (理理)理解抛物线的定义、几何图形和标准方程,理解抛物线的定义、几何图形和标准方程, 知道它的简单几何性质知道它的简单几何性质 2理解数形结合的思想,了解抛物线的简单应理解数形结合的思想,了解抛物线的简单应 用用2022-5-25.32022-5-25.41抛物线的定义抛物线的定义 平面内与一个定点平面内与一个定点F和一条定直线和一条定直线l的距离的距离 的点的轨的点的轨 迹叫做抛物线,点迹叫做抛物线,点F叫做抛物线的叫做抛物线的 ,

2、直线,直线l叫做抛物叫做抛物 线的线的 ,定点,定点F不在定直线不在定直线l上上相等相等焦点焦点准线准线2022-5-25.5思考探究思考探究当定点当定点F在定直线在定直线l上时,动点的轨迹是什么图形?上时,动点的轨迹是什么图形?提示:提示:当定点当定点F在定直线在定直线l上时,动点的轨迹是过点上时,动点的轨迹是过点F且与且与直线直线l垂直的直线垂直的直线2022-5-25.62抛物线的标准方程和几何性质抛物线的标准方程和几何性质标准标准方程方程y22px(p0)y22px(p0)图形图形2022-5-25.7标准方程标准方程y22px(p0)y22px(p0)性性质质对称轴对称轴焦点坐标焦点

3、坐标F( ,0)F( ,0)准线方程准线方程x2抛物线的标准方程和几何性质抛物线的标准方程和几何性质x轴轴x轴轴x2022-5-25.8标准方程标准方程y22px(p0)y22px(p0)性性质质焦半径焦半径公式公式 |PF| |PF|范围范围x0 x0 x0 x02022-5-25.9标准方程标准方程y22px(p0)y22px(p0)性质性质顶点顶点坐标坐标离心离心率率e原点原点(0,0)e12022-5-25.10标准标准方程方程y22py(p0)y22py(p0)图形图形2022-5-25.11标准方程标准方程y22py(p0)y22py(p0)性性质质对称轴对称轴焦点坐标焦点坐标F(

4、0 , )F(0 , )准线方程准线方程yy轴轴y轴轴y2022-5-25.12标准方程标准方程y22py(p0)y22py(p0)性性质质焦半径焦半径公式公式 |PF| |PF|范围范围y0y0y 0y 02022-5-25.13标准方程标准方程y22py(p0)y22py(p0)性质性质顶点顶点坐标坐标离心离心率率e原点原点(0,0)e12022-5-25.141已知抛物线的方程为标准方程,焦点在已知抛物线的方程为标准方程,焦点在x轴上,其上点轴上,其上点 P(3,m)到焦点到焦点F的距离为的距离为5,则抛物线方程为,则抛物线方程为 () Ay28x By28x Cy24x Dy24x解析

5、:解析:设抛物线方程为设抛物线方程为y22px(p0)的焦的焦点,且与抛物线交于点,且与抛物线交于A、B两点,若线段两点,若线段AB的长是的长是8,AB的的中点到中点到y轴的距离是轴的距离是2,则此抛物线的方程是,则此抛物线的方程是 ()Ay212x By28xCy26x Dy24x2022-5-25.30(2)(2008全国卷全国卷)已知已知F是抛物线是抛物线C:y24x的焦点,的焦点,A、B是是C上的两个点,线段上的两个点,线段AB的中点为的中点为M(2,2),则,则ABF的面的面积等于积等于_2022-5-25.31思路点拨思路点拨2022-5-25.32课堂笔记课堂笔记(1)如图,分别

6、过点如图,分别过点A、B作抛物线准线的垂线,垂足分别作抛物线准线的垂线,垂足分别为为M、N,由抛物线的定义知,由抛物线的定义知,|AM|BN|AF|BF|AB|8,又四边形又四边形AMNB为直角梯形,故为直角梯形,故AB中点到准线的距离即为梯中点到准线的距离即为梯形的中位线的长度形的中位线的长度4,而抛物线的准线方程为,而抛物线的准线方程为x ,所以所以42 p4,故抛物线的方程为,故抛物线的方程为y28x.2022-5-25.33(2)设设A(x1,y1),B(x2,y2),则,则(y1y2)(y1y2)4(x1x2) 1.线段线段AB所在直线方程为所在直线方程为y2x2,即,即yx. x2

7、4x0 x0,x4.A(0,0),B(4,4)2022-5-25.34|AB| 4 . F(1,0),F到线段到线段AB的距离的距离d .SABF |AB|d2.答案答案(1)B(2)22022-5-25.351.直线与抛物线的位置关系直线与抛物线的位置关系 设抛物线方程为设抛物线方程为y22px(p0),直线,直线AxByC0,将,将 直线方程与抛物线方程联立,消去直线方程与抛物线方程联立,消去x得到关于得到关于y的方程的方程 my2nyq0,(1)若若m0,当,当0时,直线与抛物线有两个公共点;时,直线与抛物线有两个公共点; 当当0时,直线与抛物线只有一个公共点;时,直线与抛物线只有一个公

8、共点; 当当0)的焦点的弦,的焦点的弦,F为抛物为抛物 线的焦点,线的焦点,A(x1,y1),B(x2,y2),则,则(1)y1y2p2,x1x2 ;(2)|AB|x1x2p (为直线为直线AB的倾斜角的倾斜角);(3)SAOB ;(4)以以AB为直径的圆与抛物线的准线相切为直径的圆与抛物线的准线相切2022-5-25.37 过抛物线过抛物线y22px的焦点的焦点F的的直线和抛物线相交于直线和抛物线相交于A,B两点,如两点,如图所示图所示(1)若若A,B的纵坐标分别为的纵坐标分别为y1,y2,求证:求证:y1y2p2;(2)若直线若直线AO与抛物线的准线相交于点与抛物线的准线相交于点C.求证:

9、求证:BCx轴轴2022-5-25.38思路点拨思路点拨2022-5-25.39课堂笔记课堂笔记(1)法一:法一:由抛物线的方程可得焦点的坐标为由抛物线的方程可得焦点的坐标为F .设过焦点设过焦点F的直线交抛物线于的直线交抛物线于A,B两点的坐标两点的坐标分别为分别为(x1,y1)、(x2,y2)当斜率存在时,过焦点的直线方程可设为当斜率存在时,过焦点的直线方程可设为yk ,由由消去消去x,得,得ky22pykp20. (*)2022-5-25.40当当k0时,方程时,方程(*)只有一解,只有一解,k0,由根与系数的关系,得由根与系数的关系,得y1y2p2;当斜率不存在时,得两交点坐标为当斜率

10、不存在时,得两交点坐标为 y1y2p2.综合两种情况,总有综合两种情况,总有y1y2p2.法二:法二:由抛物线方程可得焦点由抛物线方程可得焦点F ,设直线设直线AB的方程为的方程为xky ,并设并设A(x1,y1),B(x2,y2),2022-5-25.41则则A、B坐标满足坐标满足消去消去x,可得,可得y22p ,整理,得整理,得y22pkyp20,y1y2p2.(2)直线直线AC的方程为的方程为y x,点点C坐标为坐标为 ,yc .2022-5-25.42点点A(x1,y1)在抛物线上,在抛物线上, 2px1.又由又由(1)知,知,y1y2p2,yc y2,BCx轴轴2022-5-25.4

11、3 抛物线在高考中一般以选择题或填空题的形式考抛物线在高考中一般以选择题或填空题的形式考查学生对抛物线的定义、标准方程以及几何性质等基查学生对抛物线的定义、标准方程以及几何性质等基础知识的掌握情况,而以解答题的形式出现时,常常础知识的掌握情况,而以解答题的形式出现时,常常将解析几何中的方法、技巧与思想集于一身,与其他将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查学生分析解圆锥曲线或其他章节的内容相结合,考查学生分析解决综合问题的能力决综合问题的能力2022-5-25.44 考题印证考题印证 (2009浙江高考浙江高考)(14分分)已知椭圆已知椭圆C1: 1(

12、ab0)的右顶点为的右顶点为A(1,0),过,过C1的的焦点且垂直长轴的弦长为焦点且垂直长轴的弦长为1. (1)求椭圆求椭圆C1的方程;的方程; (2)设点设点P在抛物线在抛物线C2:yx2h(hR)上,上,C2在点在点P处处的切线与的切线与C1交于点交于点M,N.当线段当线段AP的中点与的中点与MN的中点的的中点的横坐标相等时,求横坐标相等时,求h的最小值的最小值2022-5-25.45 【解解】(1)由题意,得由题意,得 从而从而 因此,所求的椭圆方程为因此,所求的椭圆方程为 x21. (4分分) (2)如图,设如图,设M(x1,y1),N(x2,y2),P(t,t2h),则抛物线,则抛物

13、线C2在点在点P处的切线斜率为处的切线斜率为y|xt2t,直,直线线MN的方程为:的方程为:y2txt2h. (6分分)2022-5-25.46 将上式代入椭圆将上式代入椭圆C1的方程中,得的方程中,得4x2(2txt2h)240. 即即4(1t2)x24t(t2h)x(t2h)240.(8分分) 因为直线因为直线MN与椭圆与椭圆C1有两个不同的交点,有两个不同的交点, 所以所以式中的式中的116t42(h2)t2h240. 设线段设线段MN的中点的横坐标是的中点的横坐标是x3,2022-5-25.47则则x3 .设线段设线段PA的中点的横坐标是的中点的横坐标是x4,则,则x4 .由题意,得由

14、题意,得x3x4,(10分分)即即t2(1h)t10. 由由式中的式中的2(1h)240,得,得h1或或h3.当当h3时,时,h20,4h20,2022-5-25.48则不等式则不等式不成立,所以不成立,所以h1.(12分分)当当h1时,代入方程时,代入方程得得t1,将将h1,t1代入不等式代入不等式,检验成立,检验成立所以,所以,h的最小值为的最小值为1.(14分分)2022-5-25.49 自主体验自主体验 (2010宣武月考宣武月考)已知已知F1、F2分别是椭圆分别是椭圆 1的左、右焦点,曲线的左、右焦点,曲线C是以坐标原点为顶点,以是以坐标原点为顶点,以F2为焦为焦点的抛物线,自点点的

15、抛物线,自点F1引直线交曲线引直线交曲线C于于P、Q两个不同的两个不同的交点,点交点,点P关于关于x轴的对称点记为轴的对称点记为M.设设 . (1)求曲线求曲线C的方程;的方程; (2)证明:证明: ; (3)若若2,3,求,求|PQ|的取值范围的取值范围2022-5-25.50解:解:(1)椭圆椭圆 1的右焦点的右焦点F2的坐标为的坐标为(1,0),可设曲线可设曲线C的方程为的方程为y22px(p0),p2,曲线,曲线C的方程为的方程为y24x.(2)证明:设证明:设P(x1,y1),Q(x2,y2),M(x1,y1) ,x11(x21), y1y2, 2 . 4x1, 4x2,x12x2.

16、 2022-5-25.51代入代入得得2x21x2,x2(1)1.1,x2 ,x1, (x11,y1)由由知,知,y1y2, (x21,y2) ,故故 .2022-5-25.52(3)由由(2)知知x2 ,x1,得,得x1x21, 16x1x216.y1y20,y1y24,则则|PQ|2(x1x2)2(y1y2)22022-5-25.53 2(x1x2y1y2) 16.2,3, ,|PQ|2 ,得,得|PQ| .2022-5-25.542022-5-25.551若抛物线若抛物线y22px的焦点与椭圆的焦点与椭圆 1的右焦点的右焦点 重合,则重合,则p的值为的值为 () A2B2 C4 D4解析

17、:解析:椭圆的右焦点是椭圆的右焦点是(2,0), 2,p4.答案:答案:D2022-5-25.562若点若点P到点到点F(0,2)的距离比它到直线的距离比它到直线y40的距离小的距离小2, 则则P的轨迹方程为的轨迹方程为 () Ay28x By28x Cx28y Dx28y解析:解析:由题意知,点由题意知,点P到点到点F(0,2)的距离与它到直线的距离与它到直线y20的距离相等,由抛物线定义知点的距离相等,由抛物线定义知点P的轨迹是抛的轨迹是抛物线,其方程为物线,其方程为x28y.答案:答案:C2022-5-25.573若双曲线若双曲线 1的左焦点在抛物线的左焦点在抛物线y22px的准的准 线

18、上,则线上,则p的值为的值为 () A2 B3 C4 D42022-5-25.58解析:解析:双曲线的左焦点双曲线的左焦点( ,0),抛物线的准线抛物线的准线x , p216,由题意知由题意知p0,p4.答案:答案:C2022-5-25.594如果直线如果直线l过定点过定点M(1,2),且与抛物线,且与抛物线y2x2有且仅有有且仅有 一个公共点,那么直线一个公共点,那么直线l的方程为的方程为_解析:解析:点点M在抛物线上,由题意知直线在抛物线上,由题意知直线l与抛物线相切于与抛物线相切于点点M(1,2),y|x14,直线直线l的方程为的方程为y24(x1),即即4xy20.当当l与抛物线相交时

19、,与抛物线相交时,l的方程为的方程为x1.答案:答案:4xy20,x12022-5-25.605已知抛物线已知抛物线C:y28x的焦点为的焦点为F,准线与,准线与x轴的交点为轴的交点为 K,点,点A在在C上且上且|AK| |AF|,则,则AFK的面积为的面积为 _2022-5-25.61解析:解析:抛物线抛物线y28x的焦点为的焦点为F(2,0),准线为,准线为x2,K(2,0)设设A(x0,y0),过,过A点点向准线作垂线向准线作垂线AB,如图,如图,则则B(2,y0),|AK| |AF| |AB| (x02),2022-5-25.62由由|BK|2|AK|2|AB|2得得 (x02)2,即

20、即8x0(x02)2,解得,解得x02,y0 4,AFK的面积为的面积为 |KF|y0|8.答案:答案:82022-5-25.636已知直线已知直线yxm和抛物线和抛物线y2x2. (1)当实数当实数m为何值时,这两个函数的图象有两个交点?为何值时,这两个函数的图象有两个交点? 一个交点?没有交点?一个交点?没有交点? (2)当当m为何值时,直线被抛物线所截得的线段长度为为何值时,直线被抛物线所截得的线段长度为 两个单位?两个单位?2022-5-25.64解:解:(1)联立联立 消去消去y整理得整理得2x2xm0,又又18m,当当0即即m 时,这两图象有两个交点;时,这两图象有两个交点;当当0即即m 时,这两图象有一个交点;时,这两图象有一个交点;当当0即即m 时,由方程组解出交点坐标时,由方程组解出交点坐标2022-5-25.65由两点间的距离公式,得由两点间的距离公式,得m 时满足题目要求时满足题目要求

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|