1、2023届高考考前指导卷(五)排列组合、二项式定理、概率统计和推理部分考点一:排列组合部分13位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A360B288C216D962从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有A120种B96种C60种D48种3将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有A12种B18种C24种D36种4记者要为5名志愿者和他们帮助的2位老人拍照
2、,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A1440种B960种C720种D480种52位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位为女生中有且只有两位女生相邻,则不同排法的种数是A60B48C42D3666把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为A144B120C72D24712名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是ABCD8要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A2种B3种C6种D8种9安排
3、3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A12种B18种C24种D36种10某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有A4种B10种C18种D20种考点二:二项式定理11展开式中的常数项为A1B46C4245D424612设m为正整数,(xy)2m展开式的二项式系数的最大值为a,(xy)2m1展开式的二项式系数的最大值为b,若13a=7b,则m A5B6C7D813在( )的二项展开式中,若只有的系数最大,则A8B9C10D1114设aZ,且0a13,若512012+a能被13整除,则a=A
4、0B1C11D12考点三:概率统计部分15两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有A10种B15种C20种D30种16将3个1和2个0随机排成一行,则2个0不相邻的概率为()A0.3B0.5C0.6D0.817在区间与中各随机取1个数,则两数之和大于的概率为()ABCD18在区间随机取1个数,则取到的数小于的概率为()ABCD19如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是 A B C D20已知事件“在矩形ABCD的边CD上随机取一点P,使APB
5、的最大边是AB”发生的概率为,则=ABCD21如图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,ACABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则Ap1=p2Bp1=p3Cp2=p3Dp1=p2+p322某物理量的测量结果服从正态分布,下列结论中不正确的是()A越小,该物理量在一次测量中在的概率越大B该物理量在一次测量中大于10的概率为0.5C该物理量在一次测量中小于9.99与大于10.01的概率相等D该物理量在一次
6、测量中落在与落在的概率相等23有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A甲与丙相互独立 B甲与丁相互独立 C乙与丙相互独立 D丙与丁相互独立24已知随机变量服从正态分布,且,则()A0.6B0.4C0.3D0.225设,则随机变量的分布列是:则当在内增大时A增大 B减小 C先增大后减小D先减小后增大26设两个正态分布和的密度函数图像如图所示则有ABCD27某群体中的每位成员使用
7、移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,则A0.7B0.6C0.4D0.3考点四:推理部分28甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A乙可以知道其他两人的成绩B丁可以知道四人的成绩C乙、丁可以知道对方的成绩D乙、丁可以知道自己的成绩29学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则
8、称“学生甲比学生乙成绩好”如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A2人B3人C4人D5人30在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我和甲的都高丙:我的成绩比乙高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A甲、乙、丙 B乙、甲、丙 C丙、乙、甲D甲、丙、乙31某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图图中A点表示十月的平均最高气温约为15,B点表示四月的平均最低气温约为5下面叙述不正确的
9、是A各月的平均最低气温都在0以上B七月的平均温差比一月的平均温差大C三月和十一月的平均最高气温基本相同D平均最高气温高于20的月份有5个二、双空题32已知多项式2=,则=_,=_.三、填空题334名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有_种.34将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是_.35从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是_(用数字作答)36的展开式中的第
10、四项是_. 37已知的展开式中没有常数项,且2n8,则n=_参考答案:1B【解析】【详解】试题分析:先排三个男生有种不同的方法,然后再从3名女生中任取2人“捆”在一起记作A,(A共有C32A22=6种不同排法),剩下一名女生记作B,让A、B插入男生旁边4个位置的两个位置有,此时共有6612=432种,又男生甲不在两端,其中甲在两端的情况有:26=144种不同的排法,共有432-144=288种不同排法故选B考点:本题考查了排列问题点评:对于此类问题,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题2C【解析】【详解】试题分析:根据题意,首先从5人中抽出两人在星
11、期六参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期五、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有=60种,故选C考点:排列组合及简单计数问题点评:本题考查排列、组合的综合运用,本题解题的关键是注意优先分析特殊的元素,同时需要区分排列与组合的意义3A【解析】【详解】【思路点拨】先排第一列三个位置,再排第二列第一行上的元素,则其余元素就可以确定了.解:先排第一列,由于每列的字母互不相同,因此共有321种不同的方法;再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法,因此共有3212=12(种)不同的方法.4B【解析】【详解】5
12、名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B5B【解析】【详解】当两个男生在女生之间时:先从女生中选人站在一起,有种不同的站法,由于2个女生与1个男生的位置可以交换,有种不同方法,再将两个男生站在女生之间,有种不同方法,此时有种不同的站法;当男生站两边时:女生之间的男生必定是男生甲,但另外1个男生可在两端选一,此时有种不同的站法;满足条件的不同排法的种数是6D【解析】【详解】试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有种考点:排列、组合及简单计数问题7C【解析】【详解】试题分析:第一步从后排8人中选2人有种方法,第二
13、步6人前排排列,先排列选出的2人有种方法,再排列其余4人只有1种方法,因此所有的方法总数的种数是考点:排列组合点评:此类题目的求解一般遵循先选择后排列,结合分步计数原理的方法8C【解析】【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有种分法第二步,将2组学生安排到2个村,有种安排方法所以,不同的安排方法共有种故选:C【点睛】解答本类问题时一般采取先组后排的策略.9D【解析】【详解】4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:种故选D.10B【解析】【详解】分两种情况:选2本画册,
14、2本集邮册送给4位朋友,有C426种方法;选1本画册,3本集邮册送给4位朋友,有C414种方法所以不同的赠送方法共有6410(种)11D【解析】【详解】常数项为12B【解析】【详解】试题分析:由题意可知,即,解得故B正确考点:1二项式系数;2组合数的运算13C【解析】【分析】根据题意和二项式的性质可得二项式的系数最大为,进而得出结果.【详解】由题意知,在的展开式中,只有的系数最大,则为偶数,且二项式的系数最大为所以,得;故选:C14D【解析】【分析】由题意首先利用二项式定理将512012展开,然后结合题意得到关于a的方程,解方程即可求得实数a的值.【详解】由于,又由于13|52,所以只需13|
15、1+a,0a13,所以a=12.故选:D.【点睛】本题主要考查二项式定理研究整除问题的方法,属于基础题.15C【解析】【详解】试题分析:第一类:三局为止,共有种情形;第二类:四局为止,共有种情形;第三类:五局为止,共有种情形;故所有可能出现的情形共有种情形故选C.考点:1、分类计数原理;2、排列组合.【易错点睛】本题主要考查分类计数原理、排列组合,属容易题.根据题意,可得分为三种情况:三局结束比赛、四局结束比赛和五局结束比赛,故用到分类计数原理,当三局结束比赛时,三场都同一个人胜,共2种情况;当四局结束比赛时,若甲胜时,则前三局甲胜2场,最后一场甲胜,共有种方法,同理乙胜利时,有种方法;当五局
16、结束比赛时,若甲胜,则前四局甲胜2场,最后一场甲胜,共有种方法,同理乙胜利时,有种方法;此类问题中一定要注意,若甲胜,则最后一场必须是甲胜,前面只能胜2场,否则容易出错.16C【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:,共10种排法,其中2个0不相邻的排列方法为:,共6种方法,故2个0不相邻的概率为,故选:C.17B【解析】【分析】设从区间中随机取出的数分别为,则实验的所有结果构成区域为,设事件表示两数之和大于,则构成的区域为,分别求出对应的区域面积,根据几何概型的的概率公式即可解出【详解】如图所示:设从区间中随机取出的数分别为,则实验的
17、所有结果构成区域为,其面积为设事件表示两数之和大于,则构成的区域为,即图中的阴影部分,其面积为,所以故选:B.【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件对应的区域面积,即可顺利解出18B【解析】【分析】根据几何概型的概率公式即可求出.【详解】设“区间随机取1个数”,对应集合为: ,区间长度为,“取到的数小于”, 对应集合为:,区间长度为,所以故选:B【点睛】本题解题关键是明确事件“取到的数小于”对应的范围,再根据几何概型的概率公式即可准确求出19A【解析】【详解】本题考察几何概型及平面图形面积求法.令,扇形OAB为对称图形,ACBD围成面积为,围成OC为,
18、作对称轴OD,则过C点即为以OA为直径的半圆面积减去三角形OAC的面积,在扇形OAD中为扇形面积减去三角形OAC面积和,扇形OAB面积,选A.20D【解析】【详解】如图所示,设AB=4,因为使APB的最大边是“AB”发生的概率为,所以EF=2,CF=DE=1,所以根据勾股定理,所以,所以.21A【解析】【分析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积
19、为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.22D【解析】【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;对于D,因为该物理
20、量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.故选:D.23B【解析】【分析】根据独立事件概率关系逐一判断【详解】 ,故选:B【点睛】判断事件是否独立,先计算对应概率,再判断是否成立24C【解析】【分析】利用正态分布曲线对称性,知对称轴为直线,再由正态分布曲线的面积是1求解【详解】解:因为,所以由题意知图象(如图)的对称轴为直线,所以所以故选:C25D【解析】【分析】研究方差随变化的增大或减小规律,常用方法就是将方差用参数表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重
21、要知识、基础知识、运算求解能力的考查.【详解】方法1:由分布列得,则,则当在内增大时,先减小后增大.方法2:则故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.26A【解析】【详解】根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A27B【解析】【详解】分析:判断出为二项分布,利用公式进行计算即可或,,可知故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题28D【解析】【分析】根据所给信息进
22、行推理【详解】甲、乙、丙、丁四位同学中有2位优秀,2位良好,因为甲看乙、丙的成绩后仍不知道自己的成绩,可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选:D29B【解析】【详解】试题分析:用分别表示优秀、及格和不及格,显然语文成绩得的学生最多只有个,语文成绩得也最多只有个,得的最多只有个,因此人数最多只有人,显然满足条件,故选B考点:合情推理的应用30A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测
23、也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A【点睛】本题将数学知识与时政结合,主要考查推理判断能力题目有一定难度,注重了基础知识、逻辑推理能力的考查31D【解析】【详解】试题分析:由图可知各月的平均最低气温都在0以上,A正确;由图可知在七月的平均温差大于,而一月的平均温差小于,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,C正确;由图可知平均最高气温高于20的月份有7,8两个月,所以不正确故选D【考点】统计图【易错警示】解答本题时易错可能有两种:(1)
24、对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B32 16 4【解析】【详解】由二项式展开式可得通项公式为:,分别取和可得,取,可得【名师点睛】本题主要考查二项式定理的通项与系数,属于简单题 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用33【解析】【分析】根据题意,有且只有2名同学在同一个小区,利用先选后排的思想,结合排列组合和乘
25、法计数原理得解.【详解】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:现在可看成是3组同学分配到3个小区,分法有:根据分步乘法原理,可得不同的安排方法种故答案为:.【点睛】本题主要考查了计数原理的综合应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.3496【解析】【详解】试题分析:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4=96种考点:排列、组合及简单计数问题35590【解析】【分析】方法共有
26、6类,他们分别是:3名骨科、1名脑外科和1名内科医生;1名骨科、3名脑外科和1名内科医生,在每一类中都用分步计数原理解答【详解】3名骨科、1名脑外科和1名内科医生,有C33C41C5120种,1名骨科、3名脑外科和1名内科医生,有C31C43C5160种,1名骨科、1名脑外科和3名内科医生,有C31C41C53120种,2名骨科、2名脑外科和1名内科医生,有C32C42C5190种,1名骨科、2名脑外科和2名内科医生,有C31C42C52180种,2名骨科、1名脑外科和2名内科医生,有C32C41C52120种,共计20+60+120+90+180+120590种故答案为590.【点睛】本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步,属于基础题.36【解析】【分析】由二项式展开式的通项公式可求得答案.【详解】的展开式中的第四项是,故答案为:.37:5【解析】【详解】试题分析:展开式的通项是,由于的展开式中没有常数项,所以、和都不是常数,则,又因为,所以,故取考点:二项式定理点评:涉及到展开式中的问题,常用到二项式定理得通项:
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。