ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:1.08MB ,
文档编号:284703      下载积分:4 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-284703.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(欢乐马)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(22.3第1课时几何图形的最大面积.doc)为本站会员(欢乐马)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

22.3第1课时几何图形的最大面积.doc

1、 优秀领先 飞翔梦想 成人成才223实际问题与二次函数第1课时几何图形的最大面积1经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系2会运用二次函数求实际问题中的最大值或最小值3能应用二次函数的性质解决图形中最大面积问题一、情境导入孙大爷要围成一个矩形花圃花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成围成的花圃是如图所示的矩形ABCD.设AB边的长为x米,矩形ABCD的面积为S平方米当x为何值时,S有最大值?并求出最大值二、合作探究探究点:最大面积问题【类型一】利用二次函数求最大面积 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x

2、(单位:米)的变化而变化(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数(1)矩形一边长为x,则另一边长为,从而表示出面积;(2)利用配方法求出顶点坐标解:(1)根据题意,得Sxx230x.自变量x的取值范围是0x30.(2)Sx230x(x15)2225,a10,S有最大值,即当x15(米)时,S最大值225平方米方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系【

3、类型二】利用二次函数判断面积取值成立的条件 用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y的最大值,与70比较大小,即可作出判断解:(1)yx(16x)x216x(0x16);(2)当y60时,x216x60,解得x110,x26.所以当x10或6时,围成的养鸡场的面积为6

4、0平方米;(3)方法一:当y70时,x216x70,整理得:x216x700,由于256280240,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场方法二:yx216x(x8)264,当x8时,y有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程【类型三】最大面积方案设计 施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米现以O点为原点,OM所在直线为x轴建立直角坐标系(如图所示)(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数关系式;(3

5、)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下解:(1)M(12,0),P(6,6)(2)设这条抛物线的函数关系式为ya(x6)26,因为抛物线过O(0,0),所以a(06)260,解得,a,所以这条抛物线的函数关系式为:y(x6)26,即yx22x.(3)设OBm米,则点A的坐标为(m,m22m),所以ABDCm22m.根据抛物线的轴对称,可得OBCMm,所以BC122m,即AD122m,所以lABADDCm22m122mm22mm22m12(m3)215.所以当m3,即OB3米时,三根木杆长度之和l的最大值为15米三、板书设计教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况. 第 3 页 共 3 页

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|