ImageVerifierCode 换一换
格式:PPTX , 页数:31 ,大小:1.91MB ,
文档编号:2877258      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2877258.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(ANSYS电子产品可靠性仿真介绍课件.pptx)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

ANSYS电子产品可靠性仿真介绍课件.pptx

1、ANSYS 电子产品可靠性仿真介绍电子产品可靠性仿真介绍Analyzing Printed Circuit Boards (PCBs) and PackagesGalileo Board3456 BodiesHow to prepare the board for analysis?Traditional ApproachExport step file from the board layout.The exported bodies are overlapping.Import into Design Modeler / Space ClaimPerform Boolean operati

2、on and share topologyImport Geometry into MechanicalMeshSpecify boundary conditionsSolveAnalyzing Printed Circuit Boards (PCBs) and PackagesGalileo Board3456 BodiesHow to prepare the board for analysis?Traditional ApproachExport step file from the board layout.30 minsImport into Design Modeler / Spa

3、ce Claim10 minsPerform Boolean operation and share topology24hrs and still runningImport Geometry into MechanicalMeshSpecify boundary conditionsSolveTraditional approach does not workTrace mapping provides a fast and efficient method to model such PCBs without incurring the inordinate cost of proces

4、sing geometry and mesh. Geometry is modeled by just the dielectric layers. Very simple geometry which can be easily generated and meshed. Effect of traces is modeled by checking for the presence of Metal Trace in each element, and assigning a new material with material properties calculated based on

5、 Metal fraction.What is Trace Mapping?Trace Mapping LayoutSimplified Geometry and MeshLayout representation as Metal MapMetal map on Target MeshSpaceClaim now has the ability to import ECAD files.Can import: Layout Geometry Layer Topology Supported File Formats: Cadence SPB (*.brd;*.mcm;*.sip) ANSYS

6、 Electronics Database (*.def) Other ECAD (*.tgz;*.xml;*.cvg;*.gds;*.sf;*.strm)Creating Simplified GeometryECAD Import in Space ClaimECAD Files can be imported into SpaceClaim using File - OpenECAD Import in Space Claim11 layersEach layer as a separate bodyShared TopologyDetails show Material Assignm

7、ent for each layerThe PCB 3D layout files can be specified in the External DataTransfer link from External Data Setup to Model cell in Mechanical system transfers the layout data to MechanicalFollowing formats are supported: Ansoft ANF Cadence BRD/MCM/SIP ODB+ TGZ ICEPAK BOOL+INFO ICEPAK COND+INFOFo

8、r each file user can specify: Rigid transforms to align the board outline with geometry.Importing Trace Data in MechanicalThe refresh operation on Model cell automatically inserts Imported Trace folder in the Tree. It automatically adds an Imported Trace object under the Imported Trace folder Additi

9、onal Imported Trace objects can be added by right click on Imported Trace folder and choosing Insert-TraceThe details view of the Imported Trace object allows user to specify Trace Import definition. Scoping: to specify the bodies representing the layer geometry for the PCB. External Data Identifier

10、: drop-down list of available ECAD files from the list of files specified in the External Data system.Importing Trace Data in Mechanical (contd.)The Data View allows the user to see (and modify) the layers specified in the PCB layout. The following information is available. Layer Names Layer Thickne

11、sses Trace material Activation / Deactivation of layers.Trace material is defined in the Engineering Data module Two sample materials have been added in General Materials library Copper Alloy (Metal) FR-4 (Dielectric)The dielectric material is assigned using Material field in body detailsImporting T

12、race Data in Mechanical (contd.)Once fully defined, the Import operation imports the Trace data and maps onto the Target mesh.Graphics Controls allow user to visualize the mapped dataAdditional Controls: Material-Modeling option allow user to control how material properties are calculated based on M

13、etal Fraction. X/Y-Discretization to you specify the grid density count to create the trace metal distribution of the board Importing Trace Data in Mechanical (contd.)22DisplacementDisplacement 2Uniform Temperature 50CBoundary ConditionsResultsX DeformationY DeformationResultsZ DeformationZ Deformat

14、ion (Full Fidelity)Good agreement between Full Fidelity and Trace Mapping analysisMore ResultsEquivalent StressEquivalent StrainMetal Trace mapping is also supported on shells for Structural AnalysisThe geometry is represented by a single shell bodyThe layers are modeled through layered elementsSmal

15、l differences are present in the definition of Imported Trace Activation/Deactivation is unavailable Dielectric material is specified in the data viewTrace Mapping on ShellsElectromigration AnalysisRelease 17.0Electromigration What? Displacement (movement) of metal atoms induced by intense electric

16、current through the conductor Diffusion controlled mass transport in the direction of electron flow (electron wind) Atoms move in the direction opposite to the electric current and form hillocksHillock or whisker failure Vacancies migrate in the direction of the electric current and form voidsIncrea

17、sed resistance Electric currentElectron flow Electromigration (EM) induced failure Key reliability issue for integrated circuits (IC)Electromigration Where? IC conductors On-chip interconnects and vias Micro-bumps, flip-chip solder joints, copper pillars Ball-grid-array (BGA) solder balls Through-si

18、licon vias (TSV) Under bump metallization (UBM) Copper redistribution layers (RDL)Electromigration Why? Miniaturization of electronic components Smaller interconnect sizes Increased current density Higher temperatures and mechanical stresses Dimension mismatches among interconnects New interconnect

19、materials Cu or Cu-Al interconnects Pb-free (”green”) solder joints New joint designs Cu pillar vs solder bumpNew under bump metallization (UBM) Thickness and stacking order of Cu and NiElectromigration Who? Leading providers of semiconductor packaging design, assembly and test services Flip chip pa

20、ckaging Copper pillar bumping and packaging Copper wire interconnects Through Silicon Via (TSV) technologyElectromigration Reliability The goal of EM reliability analysis is to determine the Mean-time-to-failure (MTTF) of the interconnect Safe (maximum allowable) electric currents Role of other fact

21、ors affecting the interconnect reliability Temperature, stresses Metallurgy (UBM stacking and materials, solder alloy composition) Relative performance of different designsThe goal of EM reliability simulation is to determine the Change of electrical resistance as a function of void formation and pr

22、opagation when local concentration reached a threshold value, the elements are EKILLed temperature, electric current, geometry intermetallic compounds (IMC) growth in solder bumps, grain orientation and surface finish Electromigration Modeling Atomic fluxGoverning EquationTkTDCQkTDCVkTeDCZCDJH2*Elec

23、tromigrationStress migrationDiffusionThermomigrationFor more details, see section “4.26 Migration Model” of the Material Reference D=D0exp(-Ea/kT) diffusivityC concentrationT temperatureV electric potentialH local hydrostatic stress = (11+ 22+ 33)/3 Parameters are input using the new TB,MIGR table E

24、a activation energyZ* effective charge numbere elementary charge, 1.602e-19 C atomic volumeQ* heat of transportCoupled-Field Analyses Fully coupled diffusion (atomic flux) and electric, structural, thermal analyses For more details, see sections “10.10 Structural-Diffusion Coupling,” “10.11 Thermal-

25、Diffusion Coupling,” “10.12 Electric-Diffusion Coupling” of the Theory ReferenceGradientFluxDisplacementThermalElectricConcentrationStressElasticityPlasticityThermal expansion TDiffusion expansion CHeatPiezocaloric effectPlastic heatThermal conductionJoule heatPeltier effectCurrentPiezoresistive eff

26、ectSeebeck effectElectric conductivityAtomicStress migration-(D/kT)cHThermomigration-(D/kT2)cQ*TElectromigration-(D/kT)cZ*e?Diffusion-DcH=trace(c(u- T- C)/3D=D0exp(-Ea/kT)Coupled-Field Elements New analyses Electric-diffusion (KEYOPT(1)=100100) Thermal-electric-diffusion (KEYOPT(1)=100110) Structura

27、l-electric-diffusion (KEYOPT(1)=100101) Structural-thermal-electric-diffusion (KEYOPT(1)=100111) Enhanced analyses Stress migration with structural and diffusion DoFs (KEYOPT(1)=100 xx1) Can also be used to model hydrogen or oxygen migration in metals Thermomigration with thermal and diffusion DoFs

28、(KEYOPT(1)=100 x1x)For more details, see sections “PLANE223,” “SOLID226,” “SOLID227” of the Element Reference 22x Coupled-Field ElementsPLANE223 2-D 8-node quadrilateralSOLID2263-D 20-node brickSOLID2273-D 10-node tetrahedron Solder Ball - Model A transient structural-thermal-electric-diffusion anal

29、ysis of a solder joint subject is performed to determine the atomic density distribution symmetry modelSOLID227, KEYOPT(1)=100111Current load I=2.85 AInitial normalized concentration C0=1SnAgCu (SAC)kB=1.3806488e-23*1.e12 ! Boltzmann constant, pJ/KkB_e=8.6173324e-5 ! Boltzmann constant, eV/KR=8.3144

30、5 ! Universal gas const, J/(K*mol)V_SAC=2.71e-29*1e18 ! atomic volume, um3Ea=0.98 ! activation energy, eVZ=-23 ! charge numberQ=0.0094 ! heat of transport, eVtb,migr,2 ! migration model for SACtbdata,1,Ea/kB_e ! diffusivitytbdata,2,V_SAC/kB ! stress migrationtbdata,3,Q/kB_e ! thermomigration tbdata,

31、4,Z/kB_e ! electromigrationCuFor more details, see sections “2.15 Thermal-Electric-Diffusion Analysis” and “2.16 Structural-Electric-Diffusion Analysis” of the Coupled-Field User Guide Simulation results after 100 hoursStress intensityNormalized concentrationElectric current densitySolder Ball - Res

32、ultsCopper Interconnect - Model A transient structural-thermal-electric-diffusion analysis is performed to determine the back stress build-up due to the electromigration of vacancies in a copper wireL = 2 mm x H =0.05 mmSOLID226, KEYOPT(1)=100111Initial normalized concentration C0=1Voltage load V =

33、0.01 VFor more details, see section “2.17 Structural-Thermal-Electric-Diffusion Analysis of the Coupled-Field User GuideCuZe=4*1.6e-19 ! POSITIVE effective charge, CkB=1.38e-23 ! Boltzmann constant, m2*kg/(s2*degK)Va=1.66e-29 ! atomic volume, m3Ceq=6e21 ! equilibrium vacancy concentration, m(-3)f=0.

34、6 ! vacancy volume relaxation factorbet=-Ceq*f*Va*1e-3 ! NEGATIVE diffusion expansionmp,betx,1,bet ! diffusion expansion - back-stressmp,cref,1,1 ! reference concentration for tb,migr,1,1 ! migration model, vacancy fluxtbdata,2,Va/kB ! stress migration tbdata,4,Ze/kB ! electromigration tbdata,8,f ! relaxation factorCopper Interconnect - ResultsNormalized Concentration atTime=1 hourBack Stress vs TimeElectric currentVacancy migration 谢谢聆听!谢谢聆听!

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|