ImageVerifierCode 换一换
格式:PPT , 页数:48 ,大小:1.19MB ,
文档编号:2949698      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2949698.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(电路分析-正弦稳态分析—1课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

电路分析-正弦稳态分析—1课件.ppt

1、 从从8-8 看出,线性时不变动态电路看出,线性时不变动态电路在正弦信号激励下,若电路的特征根在正弦信号激励下,若电路的特征根为负,其响应中的固有响应,随时间为负,其响应中的固有响应,随时间将逐渐衰减为零,而最后只剩强制响将逐渐衰减为零,而最后只剩强制响应(即正弦稳态响应) ,满足这种条件应(即正弦稳态响应) ,满足这种条件的电路称为正弦稳态电路。本章的重的电路称为正弦稳态电路。本章的重点是介绍如何用向量法分析正弦稳态点是介绍如何用向量法分析正弦稳态响应。响应。 10-1 正正弦弦电电压压和和电电流流 一一、 正正弦弦电电压压和和电电流流的的表表达达式式 众众所所周周知知, 正正弦弦电电压压是

2、是周周期期的的按按正正弦弦规规律律随随时时间间交交变变的的电电压压。 本本书书采采用用 cos 函函数数表表示示正正弦弦电电压压和和电电流流, )tcos(I) t ( iim 式中式中 Im是正弦电流的振幅,表示正弦波是正弦电流的振幅,表示正弦波变化范围的最大值;变化范围的最大值; 是角频率,表示每是角频率,表示每秒变化的弧度数, 单位为弧度秒变化的弧度数, 单位为弧度/秒 (秒 (rad/s) 。) 。 由由 于于 正正 弦弦 波波 的的 一一 个个 周周 期期 对对 应应 于于 2,即即 2T,所所 以以 与与 周周 期期 T 和和 频频 率率 f 的的 关关 系系 为为 f2T2 )

3、t ( imImI 2T T 2)rad( t ti i 是正弦电流的初相, 代表是正弦电流的初相, 代表) t ( i在在t=0的相位。的相位。若若i 为正值,则为正值,则) t ( i的正最大值发生在的正最大值发生在 t=0 以以前, 若前, 若i 为负值, 则为负值, 则) t ( i的正最大值发生在的正最大值发生在 t=0之后。之后。 i(t) 2 tIm-Imo例如例如)90tcos(ItsinI) t ( iomm I IM M, 称为正弦波的三要素,若给出称为正弦波的三要素,若给出表达式或波形,即可确定这三要素;表达式或波形,即可确定这三要素;若给出三要素,则可写出表达式或绘若给

4、出三要素,则可写出表达式或绘出波形。出波形。 ,例例 设设V)30t2sin(10) t (u0 ,求以,求以 cos函数表示的初相函数表示的初相u 。 解:解:)9030t2cos(10) t (u00 V)60t2cos(10o 0u60 例例 求求A)6t 2sin(2)4t 2cos() t ( i 的的 Im, 和和 。 解:原式解:原式t2sin025. 1t2cos29. 06sint2cos26cost2sin24sint2sin4cost2cos) t ( i )29. 0025. 1tgt2cos()025. 1()29. 0(122 )8 .105t2cos(06. 10

5、 0m8 .105, s/rad2,06. 1I 二、同频率正弦波的相位差二、同频率正弦波的相位差 两点说明:两点说明: (1)规定相位差)规定相位差 ; (2)若算出)若算出 ,则实际相位差应为,则实际相位差应为 2 设设)tcos(I) t (i1m11 )tcos(I) t (i2m22 则则2121)t()t( 称为称为) t (i1与与) t (i2的相位差,即同频率正弦的相位差,即同频率正弦波的相位差就等于它们的初相差。波的相位差就等于它们的初相差。 若若0 ,同相;,同相;0 ,1i超前超前2i; 0 ,1i滞后滞后2i; ,反相。,反相。 例例 设设A)43tcos(3) t

6、(i1 , A)2tcos(5)t(i2 求求1i与与2i的相位差的相位差 解解: 45)2(43 则则43245 i11i滞滞后后2i43 ,或或2i超超前前1i43 。 例例 设设A)30t100cos(10) t ( i0 , V)15t100sin(2) t (u0 求求) t ( i与与) t (u的相位差的相位差 。 作作业业: (P440 页页)10-2,10-5,10-6 解解: )105t100cos(2)9015t100cos(2)t (u000 V)75t100cos(2)180105t100cos(2000 000457530 ( ) t ( i滞后滞后) t (u )

7、 三三、正正弦弦电电压压电电流流的的向向量量表表示示 tsinjtcosetj (式式中中1j ) 即即)eIm(tsin),eRe(tcostjtj 正正弦弦电电压压: eURe)tcos(U) t (u)t( jmm eURee .eURetjmtjjm 式中的复数式中的复数 mjmmUeUU称为正弦电压称为正弦电压) t (u的相量。的相量。 (此相量是用极坐标表示的复数,(此相量是用极坐标表示的复数,也可用直角坐标表示该复数,如图所示) 。也可用直角坐标表示该复数,如图所示) 。 即相量是由正弦量的振幅和初相所构成的即相量是由正弦量的振幅和初相所构成的一个复数。其中振幅是复数的模,初相

8、是复一个复数。其中振幅是复数的模,初相是复数的幅角。数的幅角。 给出正弦量的表达式,就可确定该正弦量的给出正弦量的表达式,就可确定该正弦量的相量,反之,给出一个相量及其相量,反之,给出一个相量及其 ,就可写,就可写出正弦量的表达式。出正弦量的表达式。 +jo sinjUm mmUU cosUm+jo sinUm mmUU1 cosUm sinjUm mmUU cosUm例如例如 A605IA)60t314cos(5) t ( i0m0 V505UtV314cos5) t (u0m 又如又如 A)60t2sin(10) t ( i0 A)150t2cos(10) t ( i0 A15010I0m

9、 以上各式中的符号“以上各式中的符号“”是表示左边的正弦”是表示左边的正弦量与右边的相量是相互对应关系,即量与右边的相量是相互对应关系,即) t ( i的相的相量是量是mI,若已知,若已知A605I0m ,则所对应的正弦,则所对应的正弦电流为(设电流为(设s/rad314 ) A)60t314cos(5eIRe) t ( i0t314jm ) t ( i与与mI不能写成等号。不能写成等号。) t ( i是时域表达是时域表达式,而式,而mI常称为频域表达式。常称为频域表达式。 例例:设设已已知知V305U0m ,且且 2 V1505U0m mU所所代代表表的的正正弦弦电电压压为为 V)150t2

10、cos(5) t (u0 正弦量之间的运算与相量之间的运算关系有正弦量之间的运算与相量之间的运算关系有如下引理:如下引理:(1)唯一性引理唯一性引理设设i i1 1(t) I(t) I1m1m , i , i2 2(t) I(t) I2m2m若若i1(t)=i2(t), 则则I1m=I2m反之,若反之,若I1m=I2m, 则则 i1(t)=i2(t) 9 (2) (2) 线性引理线性引理 设设i1(t) I1m , i2(t) I2m则则 a1i1(t)+a2i2(t) a1I1m+a2I2m (3).微分引理微分引理 设设mI) t ( i eIjReeIdtdReeIRedtddtditj

11、mtjmtjm mIjdtdi , m222I)j (dtid mnnnI)j (dtid 例例 求求A)6t2sin(2)4t2cos() t ( i 的的Im, 和和 。 (前面举过的一例)。 (前面举过的一例) 解:解:)73. 1 j1(707. 0j707. 0120241I0m 08 .10506. 1025. 1 j29. 0 )8 .105t2cos(06. 1) t ( i0 即即 Im=1.06, =2 rad/s, =105.80 例例 若若V)36t2cos(3) t (u0 ,求,求 33dt) t (ud? 解解:0m363U) t (u 33dt) t (ud所对

12、应的相量为所对应的相量为 0000035424)9036(243624j363)2j ( )54t2cos(24dt) t (ud033 四四、 正正弦弦电电压压电电流流的的有有效效值值 在在周周期期变变化化的的电电压压、电电流流中中是是用用有有效效值值而而不不是是用用振振幅幅值值表表征征其其大大小小。 1、 有有效效值值的的定定义义 有有效效值值是是将将周周期期变变量量(如如电电流流 i)和和直直流流电电流流 I 在在一一个个周周期期内内通通过过同同一一电电阻阻所所消消耗耗的的能能量量作作比比较较来来度度量量的的: iRIR对对 i T02T0idt) t (iRdt) t (pW 对对 I

13、 WI=PT=RI2T iRIR若在一个周期内若在一个周期内 Wi=WI, 就平均作, 就平均作功功的能力,这两个电流的大小是相的能力,这两个电流的大小是相等的,则等的,则 I 的数值称为周期的数值称为周期 i 的有的有效值,即效值,即 T02dt) t (iT1I T02T0idt) t (iRdt) t (pW WI=PT=RI2T 2、正正弦弦波波有有效效值值与与振振幅幅值值的的关关系系 可可以以导导出出mmI707. 02II ,mmU707. 02UU 城城市市照照明明供供电电电电压压 220V 即即指指有有效效值值,其其振振幅幅值值为为 V311Um 作业: (作业: (P440

14、页)页)10-2,10-5,10-6,10-8,10-9 3、 有效值相量有效值相量I和和U 由正弦波的有效值和初相所构成的极由正弦波的有效值和初相所构成的极坐标复数称为有效值相量, 它与振幅相坐标复数称为有效值相量, 它与振幅相量的关系为量的关系为 I2I2IImm 今后, 除非特别申明, 相量均指有效值今后, 除非特别申明, 相量均指有效值相量。相量。 10-2 正弦稳态响应正弦稳态响应 一、一、 在在8-8 中已讨论过一阶电路在中已讨论过一阶电路在正弦信号激励下的响应为(参见该正弦信号激励下的响应为(参见该节及习题节及习题 8-68) 特特解解或或强强制制响响应应齐齐次次解解或或固固有有

15、响响应应)tcos(IKe) t ( imt 对于第一项,若对于第一项,若 0(即特征根(即特征根s0) , 这是暂态响应, 第二项便是正) , 这是暂态响应, 第二项便是正弦稳态响应。弦稳态响应。 确定正弦稳态响应的过程及方法,确定正弦稳态响应的过程及方法,是首先假设一个正弦函数, 然后将该是首先假设一个正弦函数, 然后将该正弦函数代回微分方程, 这涉及三角正弦函数代回微分方程, 这涉及三角函数的微分函数的微分,积分和化简, 当微分方程积分和化简, 当微分方程的阶数很高时, 计算的阶数很高时, 计算mI和和 并非易事。并非易事。当正弦量用相量表示后, 用相量法求当正弦量用相量表示后, 用相量

16、法求解微分方程的正弦特解, 就变得比较解微分方程的正弦特解, 就变得比较容易。容易。 二二、 用用相相量量法法求求解解微微分分方方程程的的特特解解 t=0RC+_ucis以以 RC 一一阶阶电电路路为为例例. 图图中中) t ()tcos(I) t (iisms 求求) t (uc的的特特解解) t (ucp。 首先建立首先建立0t的微分方程的微分方程 )tcos(IuR1dtducismcc 其解其解cpchucmtcuu)tcos(UKe) t (u 其中齐次解其中齐次解cpu为什么是为什么是 tKe不再赘不再赘述,如何确定待定常数也不再说明,述,如何确定待定常数也不再说明,现只讨论如何用

17、相量法求特解现只讨论如何用相量法求特解) t (ucp,即即cmU和和 u 各等于多少。各等于多少。 t=0RC+_ucis设设ucmcmcpUU) t (u ,ismsmsII) t (i &将将cpu代入原微分方程,并两端取相量,由微代入原微分方程,并两端取相量,由微分引理得分引理得 smcmIU)R1cj ( 上式称为原微分方程的复数方程。上式称为原微分方程的复数方程。 (这是一(这是一个代数方程)由复数方程得个代数方程)由复数方程得)R1cj/(IUsmcm t=0RC+_ucis)tcos(IuR1dtducismcc 由复数运算,很容易得出由复数运算,很容易得出ucmcmUU ,进

18、,进而求得上述电路的特解(即正弦稳态响应) 。而求得上述电路的特解(即正弦稳态响应) 。由初始条件可确定由初始条件可确定chu中的待定常数中的待定常数 K,于是,于是求得全响应求得全响应) t (uc。 显而易见,由于相量法求特解是将显而易见,由于相量法求特解是将微分方程化成代数方程来求解,因微分方程化成代数方程来求解,因此,可适用于高阶常系数微分方程此,可适用于高阶常系数微分方程在正弦激励下的特解。在正弦激励下的特解。 例例 10-5 已已知知V)30t2cos(2) t (u0s ,求求) t ( i的的正正弦弦稳稳态态响响应应。 解解: (1)以以) t ( i为为变变量量的的微微分分方

19、方程程: stud)( i5 . 01dtdii )120t2cos(4)30t2sin(4dtdui 2dtdidtid00s22 1 1 1H i(t)H i(t)0.5F+_us (2)其其复复数数方方程程为为: 0m21204I 22j)2j( 得得0000m1521352212042j21204I A)15t2cos(2) t ( i0 作业: (作业: (P441 页)页)10-11,10-13 即即)120t2cos(4)30t2sin(4dtdui 2dtdidtid00s22 10-3 基尔霍夫定律的相量形式基尔霍夫定律的相量形式 在上一节中,虽然相量法将微分方程在上一节中,

20、虽然相量法将微分方程在正弦激励下的特解化成了复数方程的求在正弦激励下的特解化成了复数方程的求解,但对高阶电路,微分方程的建立就是解,但对高阶电路,微分方程的建立就是一件很困难、麻烦的工作。对正弦激励下一件很困难、麻烦的工作。对正弦激励下的电路,能否象直流激励下的电阻电路那的电路,能否象直流激励下的电阻电路那样,用观察法直接写出复数方程,回答是样,用观察法直接写出复数方程,回答是肯定的, 只要引入肯定的, 只要引入 KCL、 KVL 和元件和元件 VCR的相量模型,那时,电阻电路的所有分析的相量模型,那时,电阻电路的所有分析方法将推广到正弦稳态电路。方法将推广到正弦稳态电路。 一、一、 KCL

21、的相量形式的相量形式 m11I,i m2, 2Ii m33I ,i 因此,在正弦电路中,因此,在正弦电路中,KCL 可直接用相量可直接用相量写出,即除正弦电流瞬时值满足写出,即除正弦电流瞬时值满足 KCL 以外,以外,其相量也满足其相量也满足 KCL。但注意,电流的振幅值。但注意,电流的振幅值和有效值不满足和有效值不满足 KCL。 0iii321 若三者都是同频率的正弦波,则若三者都是同频率的正弦波,则 0eIReeIReeIRetjm3tjm2tjm1 可可以以写写成成 0e )IIIRe(tjm3m2m1 0IIIm3m2m1 或或0III321 二、二、KVL 的相量形式的相量形式 CU

22、 +_+ - + -+-RuLuSuRU LU CusU 即即:除除正正弦弦电电压压瞬瞬时时值值满满足足 KVL 以以外外,其其相相量量 (振振幅幅相相量量或或有有效效值值相相量量) 也也满满足足KVL。仍仍注注意意,振振幅幅和和有有效效值值不不满满足足 KVL。 同同样样有有: ) t (u) t (u) t (u) t (uscLR smcmLmRmUUUU 或或scLRUUUU 例例 : 上上 图图 电电 路路 中中 , 已已 知知tcos100) t (us ,tsin30) t (uL ,)180tsin(150) t (u0c 求求)t(uR +_+ -+ -+-SuRuLuCu作

23、业: (作业: (441 页)页)10-17,10-18 解解:cmLmsmRmUUUU 其其中中0sm0100U , 30j9030U0Lm , 150j9150U0cm 0Rm502 .156120j10030j150j100U 即即 )50tcos(2 .156) t (u0R 注注: (欧欧拉拉公公式式) sinjcosej j9010 ,118010 10-4 RLC10-4 RLC元件电压电流关系的相量形式元件电压电流关系的相量形式 上式的含义是:上式的含义是: (1) RIU 或或mmRIU 即即U与与I或或mU与与mI符合欧姆定律符合欧姆定律 (2)iu ,即电压即电压 u 与

24、电流与电流 i同相。同相。 Riu 若若)tcos(I2)t ( i ,则,则)tcos(RI2) t (u IRU 或或mmIRU (电阻(电阻 VCR 的相量形式)的相量形式)一、一、 电阻元件电阻元件iRu+_ 两端取相量,由微分引理得两端取相量,由微分引理得ILjU (电感元件电感元件VCR 的相量形式)的相量形式) 若若)tcos(I2)t(iiL ,则,则)90tcos(LI2) t (u0iL 二、二、 电感元件电感元件dtdicu + u _ iL上式意味着上式意味着0iumm90LIULIU 或或 ., 0u),(0,u,u,I ,L,L,)2(LLL等等效效为为短短路路电电

25、感感此此时时直直流流当当一一定定时时当当电电感感对对电电流流的的阻阻力力随随 (3) uL超前超前iL900. (1)1)对相量对相量U U和和I I,j Lj L有有“电阻的含义;电阻的含义; iC+ -u三三、 电电容容元元件件 由此可见:由此可见: (1) j C 有“电导”的含义;有“电导”的含义; (2) c, cI,当,当 c 和和 U 一定时,一定时, cI,当当0 (直流) ,(直流) ,0Ic ,电容等效为开,电容等效为开路,这正是直流稳态时,电容应有的表路,这正是直流稳态时,电容应有的表现。现。 等等式式两两边边取取相相量量,由由微微分分引引理理得得 UcjI 上上式式意意

26、味味着着 0ui90cUI dtduc) t ( i (3) icci超前超前cu 900。 若若)tcos(U2) t (uuc 则则)90tcos(cU2) t (i0uc 例例 已知电流表已知电流表 A1、A2 的读数如图,求电的读数如图,求电流表流表 A 的读数。的读数。 ?A A10A1 A10A2 RC解:设并联支路两端电压解:设并联支路两端电压00UU 则则A010I01 ,A10jA9010I02 A451 .1410j10III021 即电流表即电流表 A 的读数为的读数为 14.1A。 例例 已知已知A)30t5cos(25) t ( i0 , 求求) t (us。 4 2

27、 2H H 0.5F+_iSu解:解:A305I0 则则V10j3 .173020I4U0R V3 .43j251205030525jILjU00L& V73.1j16025.05j305cjIU00c &V4 .975257.51j7 . 6UUUUcLRs V)4 .97t5cos(252) t (u0s 四四、 阻阻抗抗与与导导纳纳 欧欧姆姆定定律律的的相相量量形形式式元件元件或或N I U 1、 阻抗的定义阻抗的定义 jXR)(IUIUIUZiumm (1) Z 虽然是两个相量之比,但虽然是两个相量之比,但 Z 不是相不是相量,通常是一复数,有模和幅角或实部和虚量,通常是一复数,有模和

28、幅角或实部和虚部,实部为电阻成分,虚部为电抗成分。部,实部为电阻成分,虚部为电抗成分。 (2).阻抗值取决于电路结构、 元件参数阻抗值取决于电路结构、 元件参数及电源频率。阻抗的单位为欧(及电源频率。阻抗的单位为欧( ) 。) 。 引出阻抗后,三种基本元件(引出阻抗后,三种基本元件(R、L、C)的)的 VCR 相量形式可统一为相量形式可统一为 IZU 或或mmIZU 上式称为欧姆定律的相量形式。上式称为欧姆定律的相量形式。 2.三种基本元件的阻抗三种基本元件的阻抗 R:ZR=R 即电阻元件的阻抗为一实数(电阻) 。即电阻元件的阻抗为一实数(电阻) 。 L: LLjXLjZ 即电感的阻抗是一纯虚

29、数(有抗无阻) 。即电感的阻抗是一纯虚数(有抗无阻) 。其中其中LXL 称为电感的电抗,简称感抗称为电感的电抗,简称感抗. 感感抗抗为为正正,正正抗抗代代表表电电压压超超前前电电流流。阻阻抗抗为为一一正正电电抗抗,代代表表电电压压超超前前电电流流 900。 C: ccjXc1jcj1Z 电容的阻抗也是一个纯虚数。电容的阻抗也是一个纯虚数。其中其中c1Xc 称为电容的电抗,简称容抗称为电容的电抗,简称容抗. 容抗为负容抗为负,负抗代表电流超前电压。 阻负抗代表电流超前电压。 阻抗为一负电抗,代表电流超前电压抗为一负电抗,代表电流超前电压900。 3.导纳的定义导纳的定义 jBG)(UIZ1UIY

30、ui 元件元件或或N I U 式中的实部式中的实部G为电导, 虚部为电导, 虚部B为电纳。为电纳。导纳的单位为西(导纳的单位为西(S) ,引出导纳,元) ,引出导纳,元件欧姆定律相量形式还可表示为:件欧姆定律相量形式还可表示为: UYI 或或YIU 4.三种基本元件的导纳三种基本元件的导纳 GR1YR (只有导而无纳)(只有导而无纳) LLjBL1jLj1Y (有纳无导)(有纳无导) 其中其中L1BL 称为感纳,感纳为负。称为感纳,感纳为负。纳为负的物理意义与抗为正的物理纳为负的物理意义与抗为正的物理意义相同。意义相同。 作作业业: (442 页页)10-23,10-24 ccjBcjY (也是有纳无导)(也是有纳无导) 式中式中cBc 称为容纳,容纳为正,称为容纳,容纳为正,正纳意味着电流超前电压,只有正纳正纳意味着电流超前电压,只有正纳的的 Y 意味着意味着 i 超前超前 u 900,其物理意,其物理意义与电抗为负时的物理意义完全相义与电抗为负时的物理意义完全相同。同。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|