1、 定义定义4.3.1 以一条曲线绕其一条定直线旋以一条曲线绕其一条定直线旋转一周所产生的曲面称为转一周所产生的曲面称为旋转曲面旋转曲面或称或称回旋回旋曲面曲面. .这条定直线叫旋转曲面的这条定直线叫旋转曲面的旋转轴旋转轴4.3 4.3 旋转曲面旋转曲面这条曲线叫旋转曲面的这条曲线叫旋转曲面的母线母线曲线曲线 C 00),(xzyfCy zo绕绕 z轴轴4.3 4.3 旋转曲面旋转曲面曲线曲线 C 00),(xzyfxCy zo绕绕z轴轴.4.3 4.3 旋转曲面旋转曲面曲线曲线 C 00),(xzyf旋转一周得旋转一周得旋转曲面旋转曲面 SCSMN), 0(11zy zz 1zPMPy |11
2、y1zy zo绕绕 z轴轴.22yx f (y1, z1)=0M(x,y,z).x S4.3 4.3 旋转曲面旋转曲面曲线曲线 C 00),(xzyf旋转一周得旋转一周得旋转曲面旋转曲面 SxCSMN), 0(11zyzz 1zPMPy |11y1z0),( 22 zyxfS:.绕绕 z轴轴.22yx f (y1, z1)=0M(x,y,z)f (y1, z1)=0f (y1, z1)=0.y zo S4.34.3 旋转曲面旋转曲面xozy0),( zyf), 0(111zyM M),(zyxM设设1)1(zz (2)点)点M到到z轴的距离轴的距离|122yyxd 建立旋转曲面的方程:建立旋转
3、曲面的方程:如图如图将将 代入代入2211,yxyzz 0),(11 zyfd , 0,22 zyxf得方程得方程 , 0,22 zyxf方程方程同同理理:yoz坐坐标标面面上上的的已已知知曲曲线线0),( zyf绕绕y轴轴旋旋转转一一周周的的旋旋转转曲曲面面方方程程为为 . 0,22 zxyf例例1 1 将下列各曲线绕对应的轴旋转一周,求将下列各曲线绕对应的轴旋转一周,求生成的旋转曲面的方程生成的旋转曲面的方程(1)xOz 面上双曲线面上双曲线12222 czax分别绕分别绕 x轴和轴和 z轴;轴; 绕绕x轴轴旋旋转转122222 czyax旋转双叶双曲面旋转双叶双曲面yzoxyzox绕绕z
4、轴轴旋旋转转122222 czayx(1)xOz 面上双曲线面上双曲线12222 czax分别绕分别绕 x轴和轴和 z轴;轴; xyoz xyoz旋转单叶双曲面旋转单叶双曲面(2)yOz 面面上上椭椭圆圆12222 czay 绕绕 y轴轴和和 z轴轴; 绕绕y轴轴旋旋转转绕绕z轴轴旋旋转转122222 czxay122222 czayx旋转椭球面旋转椭球面xyzxyz(3)yOz 面上抛物线面上抛物线pzy22 绕绕 z轴;轴; pzyx222 旋转抛物面旋转抛物面xyzoxyzo0 p几种 特殊旋转曲面n1 双叶旋转曲面n2 单叶旋转曲面n3 旋转锥面n4 旋转抛物面n5 环面x zbyax
5、 双曲线双曲线0y1 1 绕绕 x 轴一周轴一周x zbyax 双曲线双曲线0zy绕绕 x 轴一周轴一周1 1 x0zy 得得双双叶叶旋旋转转双双曲曲面面122222 bzyax. zbyax 双曲线双曲线1 1 .绕绕 x 轴一周轴一周axyo2 2 上题双曲线上题双曲线绕绕 y 轴一周轴一周 012222 zbyax axyoz上题双曲线上题双曲线绕绕 y 轴一周轴一周 012222 zbyax 2 2 a.xyoz 得得单单叶叶旋旋转转双双曲曲面面122222 byazx.2 2 上题双曲线上题双曲线绕绕 y 轴一周轴一周 012222 zbyax 0 0 2222 =z=byax3 3
6、 旋转锥面旋转锥面两条相交直线两条相交直线绕绕 x 轴一周轴一周x yo 0 0 2222 =z=byax.两条相交直线两条相交直线绕绕 x 轴一周轴一周x yoz3 3 旋转锥面旋转锥面x yoz 0 0 2222 =z=byax.两条相交直线两条相交直线绕绕 x 轴一周轴一周得旋转锥面得旋转锥面022222 bzyax.3 3 旋转锥面旋转锥面yoz 02 xazy4 4 抛物线抛物线绕绕 z 轴一周轴一周yoxz 02 xazy抛物线抛物线绕绕 z 轴一周轴一周4 4 yayxz22 .oxz生活中见过这个曲面吗?生活中见过这个曲面吗?.4 4 02 xazy抛物线抛物线绕绕 z 轴一周轴一周得旋转抛物面得旋转抛物面例例.5 5yxorR)0()222 rRryRx( 圆圆绕绕 y轴轴 旋转所成曲面旋转所成曲面5 5z绕绕 y轴轴 旋转所成曲面旋转所成曲面yxo.)0()222 rRryRx( 圆圆5 5z绕绕 y轴轴 旋转所成曲面旋转所成曲面22222)(ryRzx 环面方程环面方程.生活中见过这个曲面吗?生活中见过这个曲面吗?yxo)(4)( 222222222zxRrRzyx 或或.)0()222 rRryRx( 圆圆.5 5