ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:196KB ,
文档编号:3048896      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3048896.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(非平稳时间序列分析课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

非平稳时间序列分析课件.ppt

1、第六章 非平稳时间序列分析前几章讨论的都是平稳时间序列,然而在实际应用中,特别是在经济和商业中出现的时间序列大多是非平稳的,如非常数均值的时间序列,非常数方差的时间序列,或者二者皆有。第一节 非平稳性的检验 该方法即是利用时间序列资料图,观察趋势性或周期性。如果序列存在着明显的趋势或周期变化,则表明该序列可能是非平稳时间序列。这种方法直观简单,但主观性较强。 数据图检验法600650700750800850900102030405060708090ZQ 一个零均值平稳时间序列的自相关和偏自相关函数,要么拖尾,要么截尾。如果零值化的时序既不拖尾,也不截尾,而是呈现出缓慢衰减或者周期性衰减,则认为

2、可能存在趋势或周期性,应视为非平稳。 自相关、偏自相关函数检验法 该方法是首先对序列拟合一个恰当的模型,再针对该模型计算其对应特征方程的特征根。如果它的所有特征根均在单位圆之外,则该序列平稳;否则非平稳。特征根检验法 系统的平稳性即可以用特征根表示,也可以用模型的自回归参数表示。要检验一个系统的平稳性,可以先拟合适应的模型,然后再根据求出的自回归参数来检验。参数检验法 该方法可以检验序列是否存在单调趋势。 原理:将序列分成几段,计算每一段的均值或方差,组成新的序列。若原序列无明显趋势变化则均值(或方差)序列的逆序总数不应过大或过小,过大说明原序列有上升的趋势,过小说明序列有下降趋势。逆序检验法

3、 逆序列检验步骤:首先,将原序列分成M段,求出每一段的均值或方差。第二步,计算均值序列或方差序列的逆序总数。1MiiAA第三步,计算统计量进行检验在原假设条件下,A具有以下期望与方差21( )(1)4(235)( )72E AM MMMMD A其中,M为数据个数。1( )2( )AE AZD A统计量渐近服从N(0,1)。原理:在原序列与趋势变化的原假设下,原序列的每个值与序列均值对比后的符号序列的游程不应过小或过多。过小或过多均表示原序列存在某种趋势。游程检验法 游程检验步骤:首先,将原序列每个值与其均值对比,得到记号序列。第二步,设序列长度为N, 。在序列没有趋势的原假设条件下,游程总数r

4、服从r分布。 NNN2( )1N NE rN22(2)( )(1)N NN NND rNN当 大于15时NN ,统计量 ) 1 , 0()()(NrDrErZ1、DF统计量的分布特征 给出三个自回归模型 单位根检验 1tttXXa1tttXXa1tttXtXat其中是平移项(截距项),是趋势项。设00,X 2(0,).taaiid显然对于以上三个模型,当1时,时,tX是平稳的,当1是非平稳的。 tX若1,统计量 ( )ts渐进服从标准正态分布。 若1,统计量 1( )DFts若 t的分布将会有很大不同定义1n ,当统计量DF收敛于维纳过程的函数。 时, 此极限分布不能用解析的方法求解,通常要用

5、模拟和数值计算方法进行研究。对于三个模型是否等于1的检验称为DF检验。 前面所述的单变量模型只含有一阶的滞后,当模型中含有更高阶滞后项时,有类似的分析结论。此时对是否等于1的检验称为ADF检验。(2)根据不同的模型选用DF或ADF统计量,每个统计量均有三种情况选择:含截距项、含截距项和趋势项以及不含截距项和趋势项。(3)DF(ADF)检验采用的是最小二乘估计。(4)DF(ADF)检验是左侧单边检验。 当DF(ADF)临界值时接受H0,即序列为非平稳的。2、单位根检验过程: 01:1:1HH(1)第二节 平稳化方法 本节介绍三种常用的平稳化方法:差分、季节差分以及对数变换与差分结合运用。 普通差

6、分普通差分 1tttXXX2122)(tttttXXXXXtdddtdtdXBBCBCXBX1 )1 (221一般地二阶差分一阶差分例:对温度序列作一阶差分。原序列图-15-10-5051015255075100125150175200tempreture-8-4048255075100125150175200DWD一阶差分序列图 季节差分季节差分 为一周期性波动的时序,周期为S。则 ,2ststtXXX为各相应周期点的数值,它们表现出非常相近或呈现出一定的趋势特征。季节差分就是把每一观察值同上一周期相对应时刻的观察值相减,记为: sttsXXt)(【例5-3】某市1985年1993年各月工业

7、生产总值对其作季节差分。 -100102030858687888990919293DGYgy 对数变换与差分运算的结合运用对数变换与差分运算的结合运用 如果时间序列含有指数趋势,可以通过取对数将指数趋势转化为线性趋势。【例】将社会消费品零售总额通过取对数将指数趋势转化为线性趋势,然后再进行差分消除线性趋势将其变为平稳的时间序列。 050001000015000200005560657075808590XFP56789105560657075808590LNXFP-0.2-0.10.00.10.20.30.45560657075808590DLNXFP-0.2-0.10.00.10.20.355

8、60657075808590DDLNXFP第三节 齐次非平稳序列模型 齐次非平稳 含义:某些非平稳时间序列往往显示出一定的同质性(序列某一部分与其他部分构成极为相似)。这样的序列往往经过若干次差分之后可转化为平稳序列。这种非平稳性,称为齐次非平稳;差分的次数称为齐次性的阶。 随机过程Xt 经过d 次差分之后可变换为一个以 (B)为n阶自回归算子, (B)为m阶移动平均算子的平稳、可逆的随机过程,则称Xt 为(n, d, m)阶单整(单积)自回归移动平均过程,记为ARIMA (n, d, m) ARIMA模型 ( )(1)( )dttBBXB a 即其中212( )1nnBBBB 212( )1

9、mmBBBB 1. ARIMA (0,1,1) 常见常见ARIMA 模型模型1(1)(1)ttB XB a2. ARIMA (0,2,2) 2212(1)(1)ttBXBBa3. ARIMA (1,1,1) 211(1)(1)(1)ttBBXB aARMA(n,m)与 ARIMA(n,d,m)区别与联系 当d=0时, ARIMA(n,d,m)模型就是ARMA模型,即两者的区别在于序列是否平稳。 另一方面,任一ARIMA模型展开后,从形式上看与ARMA相同,但其参数并不满足稳定性条件。ARIMA建模示例 第四节 非平稳时间序列的组合模型 对于非平稳时间序列,前三节采用的方法是设法消除确定性因素(

10、长期趋势,周期趋势)的作用,然后对剩余序列拟合一个ARMA模型。本节介绍另一个处理方法,即用确定性模型描述序列中确定性因素(均值)的变动规律,用ARMA模型刻画序列中随机因素的一般规律性。 组合模型建模步骤 1根据时间序列的特征,用一定的函数形式(多项式函数、指数函数、正弦函数等)拟合序列中的确定性趋势部分,直到剩余序列平稳为止。2对剩余序列用Box-Jenkins法拟合适应的ARMA模型。3将分别拟合的确定性模型和ARMA模型结合起来并以其参数作为初始值,用非线性最小二乘法估计组合模型的参数,得到最终的组合模型。 确定性趋势的判定方法一:数据图法;方法二:特征根判别法。 1长期趋势的判定 (

11、1)常数趋势:对高阶模型来说,若其中有一个根(实数)的绝对值接近于1,则系统存在常数趋势。 (2)线性趋势:对于一个高阶模型,若有两个实特征根的绝对值接近(或等于1)时,序列中可能存在线性趋势。 (3)多项式趋势:若有三个特征根的绝对值接近或等于1,序列中可能存在二次趋势;有n+1个特征根的绝对值接近于1,则序列中存在n次多项式趋势。 (4)指数趋势:若存在一个绝对值大于1的实特征根,则序列中可能存在一个指数趋势;存在n个绝对值大于1的实特征根,则序列中可能存在n个指数趋势。 2周期趋势的判定 数据的周期性检验和分析主要使用谱分析法,也可以使用特征方程的特征根来判定。 如果存在绝对值接近于或大于1的共扼复根,时间序列中可能存在周期性变动规律。但要想用一个数学函数来描述序列中存在的周期性变化部分,还必须知道它的周期长度。 组合模型的建立 当我们判明序列中存在的确定性趋势后,就要用合适的函数形式来拟合确定性部分,直到剩余序列平稳为止,然后对剩余序列拟合适应的ARMA模型,最后建立组合模型。 11221112( ).tttttnt ntttmt mXf tYYYYYaaaa实例实例:P175

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|