ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:297.50KB ,
文档编号:3051795      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3051795.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2021年苏州市工业园区中考数学模拟试卷(4月)(有答案).doc)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2021年苏州市工业园区中考数学模拟试卷(4月)(有答案).doc

1、江苏省苏州市工业园区2021年中考数学模拟试卷(4月份)(解析版)一.选择题1.的相反数是( ) A.B.C. D. 2.人体血液中,红细胞的直径约为0.000 007 7m用科学记数法表示0.000 007 7m是( ) A.0.77105B.7.7105C.7.7106D.771073.下列运算结果为a6的是( ) A.a2+a3B.a2a3C.(a2)3D.a8a24.学校测量了全校1 200名女生的身高,并进行了分组已知身高在1.601.65(单位:m)这一组的频率为0.25,则该组共有女生( ) A.150名B.300名C.600名D.900名5.某市四月份连续五天的日最高气温分别为

2、23、20、20、21、26(单位:),这组数据的中位数和众数分别是( ) A.21,20B.21,26C.22,20D.22,266.如图,直线mn若1=70,2=25,则A等于( )A.30B.35C.45D.557.在反比例函数y= 的图象上有两点A(x1 , y1)、B(x2 , y2)若x10x2 , y1y2则k的取值范围是( ) A.k B.k C.k D.k 8.如图,在楼顶点A处观察旗杆CD测得旗杆顶部C的仰角为30,旗杆底部D的俯角为45已知楼高AB=9m,则旗杆CD的高度为( )A.mB.mC.9 mD.12 m9.如图,D,E,F分别是ABC各边的中点添加下列条件后,不

3、能得到四边形ADEF是矩形的是( )A.BAC=90B.BC=2AEC.DE平分AEBD.AEBC10.如图,等边三角形纸片ABC中,AB=4D是AB边的中点,E是BC边上一点现将BDE沿DE折叠,得BDE连接CB,则CB长度的最小值为( )A.2 2B.1C.1D.2二.填空题11.计算:(x+1)2=_ 12.甲、乙、丙三位选手各射击10次的成绩统计如下:选手甲乙丙平均数(环)9.39.39.3方差(环2)0.250.380.14其中,发挥最稳定的选手是_13.在一次数学考试中,某班级的一道单选题的答题情况如下: 根据以上信息,该班级选择“B”选项的有_ 14.若a22a8=0,则5+4a

4、2a2=_ 15.无论m为何值,二次函数y=x2+(2m)x+m的图象总经过定点_ 16.如图,已知点A(0,3),B(4,0),点C在第一象限,且AC=5 ,BC=10,则直线OC的函数表达式为_17.如图,已知扇形AOB中,OA=3,AOB=120,C是在 上的动点以BC为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是_18.如图,四边形ABCD中,ABCD,AC=BC=DC=4,AD=6,则BD=_三.解答题19.计算: ( )2+(1)0 20.解不等式组: 21.先化简,再求值: (a+2 ),其中a= 3 22.某校购买了甲、乙两种不同的足球,其中购买甲种足球共花

5、费2 000元,购买乙种足球共花费1 400元己知购买甲种足球的数量是购买乙种足球数量的2倍,且购买1个乙种足球比购买1个甲种足球多花20元问购买1个甲种足球、1个乙种足球各需多少元? 23.甲、乙、丙三人准备玩传球游戏规则是:第1次传球从甲开始,甲先将球随机传给乙、丙两人中的一个人,再由接到球的人随机传给其他两人中的一个人如此反复 (1)若传球1次,球在乙手中的概率为_; (2)若传球3次,求球在甲手中的概率(用树状图或列表法求解) 24.如图,已知四边形ABCD中,ADBC,AB=AD(1)用直尺和圆规作BAD的平分线AE,AE与BC相交于点E(保留作图痕迹,不写作法); (2)求证:四边

6、形ABED是菱形; (3)若B+C=90,BC=18,CD=12,求菱形ABED的面积 25.如图,函数y= x与函数y= (x0)的图象相交于点A(n,4)点B在函数y= (x0)的图象上,过点B作BCx轴,BC与y轴相交于点C,且AB=AC(1)求m、n的值; (2)求直线AB的函数表达式 26.如图,在ABC中,CDAB,垂足为点D以AB为直径的半O分别与AC,CD相交于点E,F,连接AF,EF(1)求证:AFE=ACD; (2)若CE=4,CB=4 ,tanCAB= ,求FD的长 27.如图,已知RtABC的直角边AC与RtDEF的直角边DF在同一条直线上,且AC=60cm,BC=45

7、cm,DF=6cm,EF=8cm现将点C与点F重合,再以4cm/s的速度沿C方向移动DEF;同时,点P从点A出发,以5cm/s的速度沿AB方向移动设移动时间为t(s),以点P为圆心,3t(cm)长为半径的P与AB相交于点M,N,当点F与点A重合时,DEF与点P同时停止移动,在移动过程中,(1)连接ME,当MEAC时,t=_s; (2)连接NF,当NF平分DE时,求t的值; (3)是否存在P与RtDEF的两条直角边所在的直线同时相切的时刻?若存在,求出t的值;若不存在,说明理由 28.如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(1,0)、B(4,0),与y轴相交于点C(1)求该函数

8、的表达式; (2)点P为该函数在第一象限内的图象上一点,过点P作PQBC,垂足为点Q,连接PC求线段PQ的最大值;若以点P、C、Q为顶点的三角形与ABC相似,求点P的坐标 答案解析部分一.选择题1.【答案】C 【考点】相反数 【解析】【解答】解: 的相反数是 故答案为:C【分析】求一个数的相反数就是在这个数的前面添上负号。 2.【答案】C 【考点】科学记数法表示绝对值较小的数 【解析】【解答】解:0.000 007 7=7.7106 , 故答案为:C【分析】已知数是绝对值小于1的数,写出a10n的形式,n是负整数,1|a|10. 3.【答案】D 【考点】同底数幂的乘法,幂的乘方与积的乘方,同底

9、数幂的除法,合并同类项法则和去括号法则 【解析】【解答】解:A、a3a2不能合并,故A错误;B、a2a3=a5 , 故B错误;C、(a2)3=a6 , 故C错误;D、a8a2=a6 , 故D正确;故答案为:D【分析】此题是幂的运算性质及合并同类项综合运用。 4.【答案】B 【考点】频数与频率 【解析】【解答】解:根据题意,得该组共有女生为:12000.25=300(人)故答案为:B【分析】根据频数=总数频率,直接代入计算即可。 5.【答案】A 【考点】中位数、众数 【解析】【解答】解:把这组数据从小到大排列为:20,20,21,23,26,最中间的数是21,则这组数据的中位数是21,20出现了

10、2次,出现的次数最多,则众数是20;故答案为:A【分析】根据中位数和众数的定义解答此题,分别找出这组数据中出现次数最多的数和从大到小或从小到大排列最中间的数即可。 6.【答案】C 【考点】平行线的性质,三角形的外角性质 【解析】【解答】解:如图,直线mn,1=3,1=70,3=70,3=2+A,2=25,A=45,故答案为:C【分析】根据两直线平行同位角相等或内错角相等,得出1=3,再根据三角形的一个外角等于不相邻的两内角之和,求得A的度数。 7.【答案】D 【考点】反比例函数的性质,反比例函数图象上点的坐标特征 【解析】【解答】解:x10x2 , y1y2 , 反比例函数图象分布在第一、三象

11、限,13k0,k 故答案为:D【分析】由已知x10x2 , y1y2可知道图像分布在第一、三象限,结合反比例函数的性质,列出关于k的一元一次不等式,解不等式即可得出结论。 8.【答案】B 【考点】正方形的判定与性质,解直角三角形,解直角三角形的应用-仰角俯角问题 【解析】【解答】解:如图,过点A作AECD于点E,AEBD,ADB=EAD=45,AB=BD=9mABBD,EDBD,AECD,AB=BD,四边形ABDE是正方形,AE=BD=AB=DE=9m在RtACE中,CAE=30,CE=AEtan30=9 =3 ,CD=CE+DE=(3 +9)m故答案为:B【分析】要求旗杆的高CD,根据题中的

12、已知条件,需过点A作AECD于点E,易证得四边形ABDE是正方形,再求出CE的长,将CE转化到RtACE中去求解,就可以求出旗杆的高。 9.【答案】D 【考点】三角形中位线定理,矩形的判定 【解析】【解答】解:D、E、F分别是ABC各边的中点,EFAB,DEAC,四边形ADEF是平行四边形,若BAC=90,或BC=2AE,或DE平分AEB,则四边形ADEF是矩形;若AEBC,则AB=AC,四边形ADEF是菱形,故答案为:D【分析】根据三角形的中位线定理可以证得四边形ADEF是平行四边形,再根据矩形的判定即可得出结论。 10.【答案】A 【考点】等边三角形的性质,翻折变换(折叠问题) 【解析】【

13、解答】解:连接CD,ABC是等边三角形,D是AB边的中点,CDAB,将BDE沿DE折叠,得BDE连接CB,当B在CD上时,CB长度的最小,AB=4,DB=DB=2,CD=2 ,CB=2 2,CB长度的最小值为2 2,故答案为:A【分析】抓住已知条件ABC是等边三角形,D是AB边的中点,根据等边三角形“三线合一”的性质,连接CD,就可以求出CD的长,根据已知条件得到当B在CD上时,CB长度的最小,再根据折叠的性质得到DB=DB,于是可得到结论。 二.填空题11.【答案】x2+2x+1 【考点】完全平方公式 【解析】【解答】解:(x+1)2=x2+2x+1,故答案为:x2+2x+1【分析】运用完全

14、平方公式解答此题。 12.【答案】丙 【考点】方差 【解析】【解答】解:0.140.250.38,丙的方差最小,这四人中丙发挥最稳定,故答案为:丙【分析】方差是用来衡量一组数据波动大小的量,方差越小表明这组数据分布越稳定,此题比较方差的大小即可。 13.【答案】28人 【考点】扇形统计图,条形统计图 【解析】【解答】解:1020%(18%16%20%)=28人,答:该班级选择“B”选项的有28人,故答案为:28人【分析】观察条形统计图和扇形统计图,先求出这个班级的人数,在算出选择“B”选项所占百分比,就可以求出该班级选择“B”选项的人数。 14.【答案】11 【考点】代数式求值,因式分解-提公

15、因式法,等式的性质 【解析】【解答】解:a22a8=0,a22a=8,则原式=52(a22a)=528=11,故答案为:11【分析】由已知得等式变形求出a22a的值,再将原代数式变形,整体代入计算。 15.【答案】(1,3) 【考点】二次函数图象上点的坐标特征 【解析】【解答】解:y=x2+(2m)x+m,m(1x)=yx22x,无论m为何值,二次函数y=x2+(2m)x+m的图象总经过定点,即m有无数个解,1x=0,yx22x,x=1,y=3,定点坐标为(1,3)故答案为(1,3)【分析】根据题意可知该定点坐标与m值无关。先把解析式表示为关于m的不定方程,再利用m有无数个解得到1x=0,yx

16、22x,求出x、y的值即可。 16.【答案】y= x 【考点】待定系数法求一次函数解析式,勾股定理的逆定理,相似三角形的判定与性质 【解析】【解答】解:如图,连接AB,作CDx轴于点D,AB= = =5,AC=5 ,BC=10,AB2+BC2=52+102=125=AC2 , ABC=90,ABO+CBD=90,AOB=BDC=90,OAB+ABO=90,OAB=CBD,ABOBCD, ,即 ,解得:BD=6,CD=8,则OD=10,点C的坐标为(10,8),设直线OC的函数表达式为y=kx,将点C(10,8)代入,得:10k=8,即k= ,直线OC的函数表达式为y= x,故答案为:y= x【

17、分析】要求直线OC的函数表达式,就需要求出点C的坐标。因此过点C作CDx轴于点D,求出CD、OD的长,将它们转化到RtCBD中,连接AB,易证到ABC是直角三角形,再证明ABOBCD,就可以求出CD、BD、OD的长,得出点C的坐标,用待定系数法可求出直线OC的函数表达式。 17.【答案】2 【考点】圆周角定理,弧长的计算,坐标与图形变化-旋转 【解析】【解答】解:如图,由此BO交O于F,取 的中点H,连接FH、HB、BD易知FHB是等腰直角三角形,HF=HB,FHB=90,FDB=45= FHB,点D在H上运动,轨迹是 (图中红线),易知HFG=HGF=15,FHG=150,GHB=120,易

18、知HB=3 ,点D的运动轨迹的长为 =2 故答案为2 【分析】由此BO交O于F,取弧B F 的中点H,连接FH、HB、BD可证得FHB是等腰直角三角形,可以得到HF=HB,FHB=90,就可以求出FDB的度数,进而可知道点D就是在H上运动,它的运动轨迹就是弧GB的长,AOB=120推出AOF=60,得出AOF是等边三角形,易求得HFG=HGF=15,就可得FHG的度数,从而求出圆心角GHB的度数,在RtBHF中可以求出半径HB的长,利用弧长公式就可以求得点D的运动轨迹的长。 18.【答案】2 【考点】平行线的性质,全等三角形的判定与性质,直角三角形斜边上的中线,勾股定理 【解析】【解答】解:如

19、图,延长BC到E,使CE=BC,连接DEBC=CD,CD=BC=CE,BDE=90ABCD,ABC=DCE,BAC=DCA又AC=BC,ABC=BAC,DCE=DCA,在ACD与ECD中,DCEDCA(SAS),AD=ED=6在RtBDE中,BE=2BC=8,则根据勾股定理知BD= = =2 故答案是:2 【分析】添加辅助线,将AD、BC、BD转化到同一三角形中,由已知BC=DC,因此延长BC到E,使CE=BC,得到DC是BDE的中线,DC=BE,可证BDE是直角三角形。再证明DCEDCA,从而得到AD=ED,然后在RtBDE中运用勾股定理可以求得BD的长。 三.解答题19.【答案】解:原式=

20、24+1=1 【考点】实数的运算,零指数幂,负整数指数幂 【解析】【分析】本题是最简二次根式,负整数指数幂、零指数幂的综合计算。计算步骤是:先算乘方、开方,再算加减。 20.【答案】解: ,由得,x2,由得,x5,所以,不等式组的解集是2x5 【考点】解一元一次不等式组 【解析】【分析】先求出每个不等式的解集,在确定不等式组的解集即可。 21.【答案】解:原式= = = ,当a= 3时,原式= 【考点】分式的化简求值 【解析】【分析】先算括号里的分式的加减,再将分式除法转化为乘法,结果要化成最简分式,最后代入求值即可。 22.【答案】解:设购买1个甲种足球需x元,则购买1个乙种足球需(x+20

21、)元,根据题意得: =2 ,解得:x=50,经检验,x=50是原分式方程的解,x+20=70答:购买1个甲种足球需50元,购买1个乙种足球需70元 【考点】解分式方程,分式方程的应用 【解析】【分析】题中的等量关系是:购买甲种足球的数量=购买乙种足球数量的2倍;1个乙种足球单价=1个甲种足球的单价+20元,然后设未知数,再列出关于x的分式方程,解方程并检验后得出结论。 23.【答案】(1)(2)解:,3次传球后,所有等可能的情况共有8种,其中球在甲手中的有2种情况,若传球3次,求球在甲手中的概率是: = 【考点】列表法与树状图法 【解析】【解答】(1)传球1次,球有可能在乙手中,也有可能在丙手

22、中,球在乙手中的概率为 故答案为: 【分析】(1)若传一次,球可能在乙手中,也可能在丙手中,就可以求出球在乙手中的概率。(2)若传球3次,列树状图,一共由8种可能,球在甲手中有2种可能,根据概率公式就可以求出球在甲手中的概率。 24.【答案】(1)解:如图所示,射线AE即为所求;(2)解:AE平分BAD,BAE=DAE,ADBC,DAE=AEB,BAE=AEB,AB=BE,AB=AD,AD=BE,四边形ABED是平行四边形,又AB=AD,四边形ABED是菱形(3)解:如图所示,连接DE,过点D作DFBC于点F,四边形ABED是菱形,DEAB,DE=BE,DEC=B,又B+C=90,DEC+C=

23、90,EDC=90,设DE=BE=x,BC=18,EC=18x,DE2+CD2=BC2 , 而CD=12,x2+122=(18x)2 , 解得x=5,DE=BE=5,EC=13,SEDC= DECD= ECDF,DF= ,菱形ABED的面积=BEDF=5 = 【考点】勾股定理,菱形的判定,菱形的判定与性质,作图基本作图 【解析】【分析】(1)按要求用尺规作图即可。(2)先证明四边形ABED是平行四边形,知道了一组对边平行,只需去证AD=BE,由AE平分BAD和ADBC易证到AB=BE,又有AB=AD,得到从而AD=BE,再由一组邻边相等的平行四边形是菱形证得结论。(3)抓住已知条件B+C=90

24、,将B、C转化到直角三角形中去,由四边形ABED是菱形,根据菱形的性质DEAB,DE=BE,证得DEC是直角三角形,利用勾股定理和直角三角形的面积的两种算法求出DE、DF的长,即可求出菱形的面积。 25.【答案】(1)解:函数y= x与函数y= (x0)的图象相交于点A(n,4), n=4,解得:n=3,m=4n=12(2)解:过点A作ADBC于D,如图所示AB=AC,BC=2CDBCx轴,ADx轴A(3,4),CD=3,BC=6当x=6时,y= =2,B(6,2)设直线AB的函数表达式为y=kx+b(k0),将A(3,4)、B(6,2)代入y=kx+b中,解得: ,直线AB的函数表达式为y=

25、 x+6 【考点】待定系数法求一次函数解析式,待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题,等腰三角形的性质 【解析】【分析】(1)由点A是两函数图像的交点,将点A坐标代入正比例函数解析式就可以求出n的值,就得到点A坐标,再将点A的坐标代入反比例函数解析式就可求得m的值。(2)要求直线AB的函数解析式,关键要求出点B的坐标,抓住题中已知条件BCx轴和AB=AC,根据等腰三角形“三线合一”的性质,因此需添加辅助线,过点A作ADBC于D,得到CD=BD=3,就可以求出点B的纵坐标为6,点B在反比例函数图像上,就可以求得点B的坐标,再用待定系数法就可以 求得直线AB的解析式。 26.

26、【答案】(1)证明:连接BE,AB是O的直径,AEB=90,CAD+ABE=90,CDAB,CDA=90,CAD+ACD=90,ABE=ACD,ABE=AFE,AFE=ACD(2)连接OF,BEC=90,BE= =8,tanCAB= ,sinCAB= ,AC=AE+CE=10,CD=8,AD=6,OD=ADOA=1,OF=5,DF= =2 【考点】勾股定理,圆周角定理,解直角三角形 【解析】【分析】(1)由已知AB是O的直径添加辅助线构造圆周角是直角,一次连接BE,得到AEB=90,再根据余角的性质得到ABE=ACD,灯具等量代换即可得到结论。(2)连接OF,在RtCBE中,利用勾股定理就可以

27、求出BE的长,再由题中的已知条件,将要解决的问题转化到直角三角形中,利用三角形函数的定义及勾股定理即可得到结论。 27.【答案】(1)(2)解:如图2所示:连结NF交DE与点G,则G为DE的中点AC=60cm,BC=45cm,DF=6cm,EF=8cm, 又ACB=DFE=90,EDFABCA=EG是DE的中点,GF=DG= EDGFD=GDFGDF+E=90,GFD+E=90A+GFD=90ANF=90AF= AN=10t又FC=4t,10t+4t=60,解得t= (3)解:如图3所示:过点P作PHAC,垂足为H,当P与EF相切时,且点为G,连结PGEF是P的切线,PGF=90PGF=GFH

28、=PHF=90,四边形PGFH为矩形PG=HFP的半径为3t,sinA= ,AP=5t,PH=3tP与AC相切EF为P的切线,PGEFHF=PG=3tAH= AP=4t,FC=4t,4t+3t+4t=60,解得t= 如图4所示:连接GP,过点P作PHAC,垂足为H由题意得可知:AH=4t,CF=4tEF是P的切线,PGF=90PGF=GFH=PHF=90,四边形PGFH为矩形PG=HFGP=FH,FH=3t4t+4t3t=60,解得:t=12综上所述,当t的值为 或12时,P与RtDEF的两条直角边所在的直线同时相切 【考点】矩形的判定与性质,切线的判定与性质,圆的综合题,相似三角形的判定与性

29、质,解直角三角形 【解析】【解答】解:(1)如图1所示:作MHAC,垂足为H,作PGAC,垂足为G在RtABC中,AC=60,BC=45,AB=75cmsinA= PM=PG= PA=3tAM=5t3t=2tHM= AM= t当MEAC时,MH=EF,即 t=8,解得t= 故答案为: 【分析】(1)分别过点M、P作MHAC,作PGAC,在RtABC中利用勾股定理和解直角三角形,可以求出sinA的值。再在RtAPG中利用解直角三角形可以得到PG:AP=3:5,根据PM=PG,表示出AM的长。在RtAMH中,利用三角函数求表示出MH的长。再由已知MEAC,易得MH=EF,建立方程,求出t的值即可。

30、(2)连结NF交DE与点G,易证明EDFABC从而得到A=E,然后再证明ANF是直角三角形,再利用解直角三角形求出AF的长,根据AF+FC=AC建立方程,求解即可。(3)此小题分两种情况:图3:过点P作PHAC,垂足为H,当P与EF相切时,且点为G,连结PG先证明PG=HF,再利用解直角三角形分别表示出AH、HF、FC的长,然后根据AH+HF+FC=AC,建立方程求解即可;图4:连接GP,过点P作PHAC,垂足为H线证明PG=HF,然后可得到AH=FC,表示出FH、AH的长,再根据AH+CF-FH=AC列出方程,再解方程即可求解。 28.【答案】(1)解:抛物线解析式为y=a(x+1)(x4)

31、,即y=ax23ax4a,则4a=2,解得a= ,所以抛物线解析式为y= x2+ x+2(2)解:作PNx轴于N,交BC于M,如图,BC= =2 ,当x=0时,y= x2+ x+2=2,则C(0,2),设直线BC的解析式为y=mx+n,把C(0,2),B(4,0)得 ,解得 ,直线BC的解析式为y= x+2,设P(t, t2+ t+2),则M(t, t+2),PM= t2+ t+2( t+2)= t2+2t,NBM=NPQ,PQMBOC, = ,即PQ= ,PQ= t2+ t= (t2)2+ ,当t=2时,线段PQ的最大值为 ;当PCQ=OBC时,PCQCBO,此时PCOB,点P和点C关于直线

32、x= 对称,此时P点坐标为(3,2);当CPQ=OBC时,CPQCBO,OBC=NPQ,CPQ=MPQ,而PQCM,PCM为等腰三角形,PC=PM,t2+( t2+ t+22)2=( t2+2t)2 , 解得t= ,此时P点坐标为( , ),综上所述,满足条件的P点坐标为(3,2)或( , ) 【考点】解一元二次方程-公式法,待定系数法求一次函数解析式,待定系数法求二次函数解析式,抛物线与x轴的交点,相似三角形的判定与性质 【解析】【分析】(1)方法一、将A、B两点坐标代入即可求出函数解析式;方法二、点A、点B是抛物线与x轴的焦点坐标,也可以设解析式为两根式,根据c=2得出结论。(2)由(1)的函数解析式可求得点C的坐标,可求出RtOBC的三边长,通过添加辅助线构造以PQ为直角边的三角形与RtOBC相似,由此过点P作PNx轴于N,交BC于M,求出直线BC的函数解析式,设点P、点M的坐标,表示出PM的长,再去证明PQMBOC,得出对应边成比例,建立方程,求出PQ关于t的函数解析式,即可求线段PQ的最大值。分两种情况:当PCQ=OBC时,得到PCQCBO,可知点P和点C关于抛物线的对称轴对称,可以求得点P的坐标;当CPQ=OBC时,证明CPQCBO,可以证得PCM为等腰三角形,再根据等腰三角形的性质,可得到关于t的一元二次方程,求出t的值,写出点P的坐标。即可得到结论。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|