ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:1.88MB ,
文档编号:3061104      下载积分:1.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3061104.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(大布丁)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第一章 空间向量与立体几何 单元检测试卷(B) -新人教A版(2019)高中数学选择性必修第一册高二上学期.docx)为本站会员(大布丁)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第一章 空间向量与立体几何 单元检测试卷(B) -新人教A版(2019)高中数学选择性必修第一册高二上学期.docx

1、2021-2022学年高二数学(人教A版2019选择性必修一)第一章 空间向量与立体几何 单元检测试卷(B)一、单选题。本大题共8小题,每小题只有一个选项符合题意。1已知是各棱长均等于的正三棱柱,是侧棱的中点,则平面与平面所成的锐二面角为( )A45B60C75D302已知空间任一点和不共线的三点、,下列能得到、四点共面的是( )ABCD以上都不对3已知两平面的法向量分别为=(0,1,0),=(0,1,1),则两平面所成的二面角为( )A45B135C45或135D904在正四面体中,异面直线与所成的角为,直线与平面所成的角为,二面角的平面角为,则,的大小关系为( )ABCD5棱长均为3的三棱

2、锥,若空间一点满足,则的最小值为( )ABCD16在平行六面体中,若,则( )ABCD7如图所示,在正方体中,点P是底面内(含边界)的一点,且平面,则异面直线与BD所成角的取值范围为( )ABCD8平行六面体(底面为平行四边形的四棱柱)所有棱长都为1,且则( )ABCD二、多选题。本大题共4小题,每小题有两项或以上符合题意。9(多选题)正三棱柱中,则( )A与底面的成角的正弦值为B与底面的成角的正弦值为 C与侧面的成角的正弦值为D与侧面的成角的正弦值为10已知ABCDA1B1C1D1为正方体,下列说法中正确的是( )ABC向量与向量的夹角是60D正方体ABCDA1B1C1D1的体积为11如图,

3、点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则()A直线BM,EN是相交直线B直线EN与直线AB所成角等于90C直线EC与直线AB所成角等于直线EC与直线AD所成角D直线BM与平面ABCD所成角小于直线EN平面ABCD所成角12如图,在三棱柱中,侧棱底面,是棱的中点,是的延长线与的延长线的交点.若点在直线上,则下列结论错误的是( ).A当为线段的中点时,平面B当为线段的三等分点时,平面C在线段的延长线上,存在一点,使得平面D不存在点,使与平面垂直三、填空题。本大题共4小题。13在长方体ABCDA1B1C1D1中,AB1,AD2,AA11,E为BC的

4、中点,则点A到平面A1DE的距离是_14如图,在空间四边形中,和为对角线,为的重心是上一点,以为基底,则_15已知长方体中,为的中点,则点到平面的距离为_16在正方体中,已知,为底面的的中心,为的重心,则_.(用,表示)四、解答题。本大题共6小题,解答过程必修有必要的文字说明,公式和解题过程17如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,ADBC,ADC=90,平面PAD底面ABCD,Q为AD的中点,M是棱PC(不与端点重合)上的点,PA=PD=2,BC=AD=1,CD=.(1)求证:平面PBC平面PQB;(2)当PM的长为何值时,平面QMB与平面PDC所成的角的大小为60?18已知

5、三棱柱中,(1)求证:平面平面;(2)若,在线段上是否存在一点,使二面角的平面角的余弦值为?若存在,确定点的位置;若不存在,说明理由19在多面体中,平面平面,四边形为直角梯形,为的中点,且点满足.(1)证明:平面.(2)当多面体的体积最大时,求二面角的余弦值.20如图,在正四棱柱中,点是的中点,点在上,设二面角的大小为.(1)当时,求的长;(2)当时,求的长.21如图,在直角梯形ABCD中,ABDC,ABC=90,AB=2DC=2BC,E为AB的中点,沿DE将ADE折起,使得点A到点P位置,且PEEB,M为PB的中点,N是BC上的动点(与点B,C不重合).(1)求证:平面EMN平面PBC;(2

6、)是否存在点N,使得二面角BENM的余弦值?若存在,确定N点位置;若不存在,说明理由.22如图,在四棱锥PABCD中,PA平面ABCD,ABAD,BCAD,点M是棱PD上一点,且ABBC2,ADPA4(1)若PM:MD1:2,求证:PB平面ACM;(2)求二面角ACDP的正弦值;(3)若直线AM与平面PCD所成角的正弦值为,求MD的长参考答案1A【解析】以为原点,以垂直的直线为轴,以为轴,以为轴,建立空间直角坐标系,是各条棱长均等于的正三棱柱,是侧棱的中点,0,设平面的法向量,又因为平面向量法则平面与平面所成的锐二面角为45故选:2B3C4D【解析】在正四面体中,设棱长为2,设为底面三角形是中

7、心,则平面.取边的中点,连结, 如图.则易证,又.所以平面,又平面,所以.所以异面直线与所成的角为.又平面.所以直线与平面所成的角为在中,所以.取边的中点,连结,则有,所以二面角的平面角为,在中,由余弦定理有:,即,所以,故选:D.5A【解析】由,根据空间向量基本定理知,与,共面.则的最小值为三棱锥的高,设为在面上的射影,由条件可得三棱锥为正三棱锥.连接并延长交于点,则所以, 所以故选:A6A【解析】解:由空间向量的线性运算,得,由题可知,则,所以,.故选:A.7C【解析】过A作平面平面,点P是底面内(含边界)的一点,且平面,则平面,即在与平面的交线上,连接,则四边形是平行四边形,平面,同理可

8、证平面,平面平面,则平面即为,点在线段上,以D为坐标原点,建立如图坐标系,设正方体棱长为1,则,设,设与BD所成角为,则,当时,取得最小值为0,当或1时,取得最大值为,则.故选:C.8C【解析】如图:由,故选:C9BC【解析】如图,取中点,中点,并连接,则,三条直线两两垂直,则分别以这三条直线为轴,轴,轴建立如图所示空间直角坐标系;设,则.底面的其中一个法向量为,与底面的成角的正弦值为,错对的中点的坐标为,侧面的其中一个法向量为,与侧面的成角的正弦值为:,故对错;故选:BC10AB【解析】由向量的加法得到:,所以A正确;,AB1A1C,故B正确;ACD1是等边三角形,AD1C60,又A1BD1

9、C,异面直线AD1与A1B所成的夹角为60,但是向量与向量的夹角是120,故C不正确;ABAA1,故0,因此D不正确.故选:AB.11ABD【解析】解:点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,BM平面BDE,EN平面BDE,BM是BDE中DE边上的中线,EN是BDE中BD边上的中线,直线BM,EN是相交直线,故A正确;取CD中点G,连接NG,可知NGCD,则ENCD,又ABCD,ENAB,即直线EN与直线AB所成角等于90,故B正确;由题意,ECD60为直线EC与直线AB所成角,由AD平面ECD,可知直线EC与直线AD所成角为90,故C错误;过

10、M作MHCD于H,连接BH,则MBH为直线BM与平面ABCD所成角,ENG为直EN平面ABCD所成角由图可知,直线BM与平面ABCD所成角小于直线EN平面ABCD所成角,故D正确故选:ABD12ABC【解析】以为坐标原点,所在直线分别为轴、轴、轴建立空间直角坐标系,则由,所以,.设平面的一个法向量为,则,取,则,所以平面的一个法向量为.假设平面,且,则.因为也是平面的法向量,所以与共线,所以成立,但此方程关于无解.因此不存在点,使与平面垂直,故选:ABC.13【解析】在长方体在 , , , , , ,设点到平面的距离为, ,解得: ,故答案为:14【解析】由题意,连接 则 .故答案为.15【解

11、析】解:以为坐标原点,射线、依次为、轴,建立空间直角坐标系,则点,2,0,0,4,从而,0,2,4,设平面的法向量为,由可得,令,所以点到平面的距离为:故答案为:16【解析】解:在正方体中,为底面的中心,为的重心,故答案为:17(1)证明见解析;(2)当PM=时,平面QMB与平面PDC所成的角大小为60.【解析】(1)ADBC,Q为AD的中点,BC=AD,BCQD,BC=QD,四边形BCDQ为平行四边形,BQCD.ADC=90,BCBQ.PA=PD,AQ=QD,PQAD.又平面PAD平面ABCD,平面PAD平面ABCD=AD,PQ平面ABCD,PQBC.又PQBQ=Q,BC平面PQB.BC平面

12、PBC,平面PBC平面PQB.(2)由(1)可知PQ平面ABCD.如图,以Q为原点,分别以QA,QB,QP所在直线为x轴,y轴,z轴,建立空间直角坐标系,则Q(0,0,0),D(-1,0,0),P(0,0,),B(0,0),C(-1,0),=(0,0),=(0,0),=(1,0,),=(-1,-),PC=.设=,则=(-,-),且01,得M(-,),=(-,(1-).设平面MBQ的法向量为=(x,y,z),则,即令x=,则y=0,z=,平面MBQ的一个法向量为=,0,.设平面PDC的法向量为=(x,y,z),则,即令x=3,则y=0,z=-,平面PDC的一个法向量为=(3,0,-).平面QMB

13、与平面PDC所成的锐二面角的大小为60,cos60=,=.PM=PC=.即当PM=时,平面QMB与平面PDC所成的角大小为60.18(1)证明见解析;(2)在线段上存在一点,.【解析】(1)在三棱柱中,四边形为平行四边形,所以,四边形为菱形,连接,则,又,且,平面,平面,又,即,平面,平面,平面平面;(2)以为坐标原点,分别以、所在直线为、轴,面内过点且垂直于的直线为轴建立如图所示的空间直角坐标系,、,设在线段上存在一点,满足,使得二面角的余弦值为,则,设平面的一个法向量为,由,取,可得,得,平面的一个法向量为,由,整理可得,即,解得.故在线段上存在一点,使二面角的余弦值为19(1)证明见解析

14、;(2).【解析】(1)分别取中点,连结.在梯形中,且,且分别为中点, ,四边形是平行四边形 又,为中点,为中点,又为中点 又平面,平面 平面(2)在平面内,过作交于.平面平面,平面平面,平面,平面 即为四棱锥的高,又底面面积确定,所以要使多面体体积最大,即最大,此时过点作,易知,两两垂直,以为正交基底建立如图所示的平面直角坐标系则,设为平面的一个法向量,则,所以,取设为平面的一个法向量,则,所以,取所以,由图,二面角为钝二面角,所以二面角的余弦值为.20(1);(2).【解析】以点为坐标原点,、所在直线分别为、轴建立空间直角坐标系,设.(1)、,设平面的法向量为,由,可得,取,则,所以,设平

15、面的法向量为,由,可得,取,可得,所以,.(1)因为,则,解得,从而点,所以,;(2),解得或.结合图形和(1)中的结论可知,从而.21(1)证明见解析;(2)存在,N为BC的中点.【解析】解:(1)证明:由PEEB,PEED,EBED=E,所以PE平面EBCD,又BC平面EBCD,故PEBC,又BCBE,故BC平面PEB,EM平面PEB,故EMBC,又等腰三角形PEB,EMPB,BCPB=B,故EM平面PBC,EM平面EMN,故平面EMN平面PBC;(2)假设存在点N,使得二面角BENM的余弦值.以E为原点,分别为x,y,z轴建立空间直角坐标系,设PE=EB=2,设N(2,m,0),B(2,

16、0,0),D(0,2,0),P(0,0,2),C(2,2,0),M(1,0,1),设平面EMN的法向量为,由,令,得,平面BEN的一个法向量为,故,解得:m=1,故存在N为BC的中点.22(1)证明见解析;(2);(3)2【解析】(1)证明:在四棱锥PABCD中,PA平面ABCD,ABAD,BCAD,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,点M是棱PD上一点,PM:MD1:2,ABBC2,ADPA4P(0,0,4),A(0,0,0),B(2,0,0),C(2,2,0),M(0,),(2,0,4),(2,2,0),(0,),设平面ACM的法向量,则,取x2,得(2,2,1),440,PB平面ACM,PB平面ACM(2)D(0,4,0),(2,2,4),(0,4,4),设平面CDP的法向量(a,b,c),则,取b1,得(1,1,1),平面ACD的法向量(0,0,1),设二面角ACDP的平面角为,则|cos|,二面角ACDP的正弦值为(3)设,(01),则,平面CDP的法向量,直线AM与平面PCD所成角的正弦值为,| |,解得,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|