ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:387.12KB ,
文档编号:3098978      下载积分:6 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3098978.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(宝宝乐园)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高中数学二次函数在闭区间上的最值问题—大盘点.docx)为本站会员(宝宝乐园)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高中数学二次函数在闭区间上的最值问题—大盘点.docx

1、二次函数在闭区间上的最值问题大盘点一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.设 ,求 在 上的最大值与最小值。分析:将 配方,得顶点为( )、对称轴为 当0 时,它的图象是开口向上的抛物线,数形结合可得在m,n上的最值:(1)当 时, 的最小值是, 的最大值是 中的较大者。(2)当 时若 ,由 在 上是增函数则的最小值是 ,最大值是 若 , 由 在上是减函数则的最大值是,最小值是 当 时,可类比得结论二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互

2、位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1. 函数 在区间0,3上的最大值是_,最小值是_解:函数是定义在区间0,3上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在0,3上,如图1所示。函数的最大值为=2 ,最小值为 图1练习. 已知 ,求函数 的最值解:由已知,可得 ,即函数 是定义在区间 上的二次函数,将二次函数配方得 其对称轴方程 ,顶点坐标 ,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为 ,最大值为 图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。例2. 如果函数 定义在区间 上,求 的最小值解:函数,其对称轴方程为 ,顶点坐标为(1,1),图象开口向上如图1所示,若顶点横坐标在区间左侧时,有10,得:讨论得:当时,解集为;当时,解集为;当时,解集为.习题答案:1、B 2、C 3、B 4、0,2 5、D 6、C 7、 8、4 9-10略

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|