ImageVerifierCode 换一换
格式:PPT , 页数:108 ,大小:11.22MB ,
文档编号:3125534      下载积分:29 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3125534.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(核医学影像中的数据处理课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

核医学影像中的数据处理课件.ppt

1、核医学影像中的数据处理核医学影像中的数据处理中国科学院高能物理研究所北京市射线成像技术与装备工程技术研究中心贠明凯Modern Nuclear Medical ImagingScanners Computers UsersOutline lData organizationlCorrection methodslRebinning lImage reconstructionlImage registration and fusionlDICOM and PACSOutline lData organizationlCorrection methodslRebinning lImage reco

2、nstructionlImage registration and fusionlDICOM and PACSData organizationlList modelHistgramlSinogramlLinogram5010015020025020406080100120SinogramPET0Sinogram rlProjections and SinogramSinogramPET0SinogramrlProjections and SinogramSinogramSPECT2D VS. 3DlSepta between crystal ringslLower sensitivitylL

3、ower randomlLower scatterl2D reconstructionlNo septalHigher sensitivitylHigher randomlHigher scatterl3D reconstruction or hybrid reconstructionOutline lData organizationlCorrection methodslRebinning lImage reconstructionlImage registration and fusionlDICOM and PACSScatter CoincidenceTrues Coincidenc

4、eRandom CoincidenceTrue Counts & NoiseNormalizationABCDAttenuationABCDScatterABCDNeed to correct the dataCorrection methodslrandoml“dead time”lnormalizationlscatterlattenuationldecaylArc correctionlDepth of interactionlMotion correctionlPartial volumelAxial of rotationlCamera head tiltRandomFinite t

5、ime window withEnergy window Coincidence timing windowActivity Random lTail fittinglsimplestlSmall changes in tail, great changes in estimatelEstimation from singles rateslMeasure the single count rate on each detector for a given time windowlSubtracting from the prompts between detector pairlSingle

6、s rate is much larger than that of coincidence eventslSingle rates change in the same way over timeDelayed coincidence channel estimationlOne channel is delayed before being sent to coincidence processinglSubtracted form prompt coincidenceslAdvantage lAccuratelSame dead time environment as prompt ch

7、annellDisadvantage lIncreased system dead timelDoubling of the statistical noise due to randomDead time correctionlDecaying source experiment is performedDead time correction (con)lLook up tablelUniform sourcelKnown quantitylShort livedlLinear extrapolation from count rate for a given level of activ

8、ityNormalization lCauses of sensitivity variationslSumming of adjacent data elementslDetector efficiency variationslGeometric and solid angle effectslRotational samplinglTime window alignmentlStructural alignmentlseptaSumming of adjacent data elementsGeometric and solid angle effectsRotational sampl

9、inglLOR at the edge are sampled less than LOR close to the centerCrystal interface factorsTime window alignment factorsNormalization methods (con)lDirect normalizationlSimplest approachlAdequate statistical qualitylVery uniform activity sourceslScatter in normalization should be substantially differ

10、ent from normal imagingNormalization methods (con)lComponent-based normalizationuivjaxvaxutrvjtruivjuiscatteruivjtbbbbuivjaxuvtruivjaxvaxutrvjtruivjuitrueuivjmggbbbbScatter correctionlLORs recorded outside object boundary can only be explained by scatterlThe scatter distribution is very broadlScatte

11、red coincidences fall within the photo-peak window mainly due to scattered once Scatter correctionlEnergy spectra distribution of scattered 511KeV photons according to the number of times each photon scattersScatter correctionlEmpirical scatter correctionslFitting the scatter tailslDirect measuremen

12、t techniquelEnergy window techniqueslDual energy window methodslMultiple energy window methodslConvolution and de-convolutionlSimulation-based scatter correctionlAnalytical simulationlMonte Carlo simulationFitting the scatter tailslSimplest approachlFit an analytical function to scatter tailslSecond

13、 order polynomial or 1D GaussianlCoincidences outside the object are entirely scatter eventslNot always well approximated, particularly in thoraxDirect measurement techniquelOnly applicable to PET with retractable septalStepslMake a measurement of the same object with and without septalScaling septa

14、 extended projections for different efficiencylSubtract from projections of polar angle 0lEstimate the oblique scatter by interpolation of the direct plane scatterDual energy window methodspwsclwscscCCRpwunsclwunscunscCCRunscsclwscpwpwunscRRCRCCDual energy window methodsMultiple energy window method

15、sScatter CorrectionAnalytical simulationScatter CorrectionSingle Scatter - Model based correctionCalculate the contribution for an arbitrary scatter point using the Klein-Nishina equationBeforeScattercorrectionAfterScattercorrectionAttenuation correctionlAttenuation in the body is equal to that of s

16、ource lying along the same LORZaidi H, Hasegawa B. J Nucl Med 2003; 44:291-315.SPECTPETAttenuation correction (con)lMeasured attenuation correctionlCoincidence transmission datalLong-lived positron emitterlNormally more than one rod source are usedlSinogram windowing is applied provide location of r

17、odlImpractical in 3DlSingles transmission datalShielded point transmission sourcelSeparate blank scan is neededlSignificant scatter and broad beamMeasured attenuation correctionlCoincidence measurement using rod sourcelTransmission measurement using point sourceCT scanlAdvantage lHigh statistical qu

18、alitylHigh spatial resolutionlSignificant reduction in scan timelDisadvantagelFaster CT, slower PETlSmaller FOV of CTlDifficulty in registrationl values do not scale linearlyAttenuation correction for PETTypes of transmission imagesCoincident photon Ge-68/Ga-68(511 keV)high noise15-30 min scan timel

19、ow biaslow contrastSingle photon Cs-137(662 keV)lower noise5-10 min scan timesome biaslower contrastX-ray(30-140kVp)no noise1 min scan timepotential for biashigh contrastOther attenuation correction methodslCalculated attenuationlRegular geometric outlinelConstant tissuelSegmented attenuationlSegmen

20、t transmission image according to tissue typelAssigning known attenuation coefficientslForward projectionattenuation correction05010015020025030000.20.40.60.811.21.4att05010015020025030000.10.20.30.40.50.60.70.8050100150200250300050100150200250300350Attenuation/Scatter correctionUniversity of Pennsy

21、lvania PET CenterNo AC or Scatter CorrAC and Scatter CorrPhilips AllegroArc correctionlDifferent sampling distance at different radial positionlEqual sampling distance is required in analytical methodlInterpolation methodlNearest interpolationlLinear interpolationlB-spline interpolation (negative va

22、lues!)DOIdepth of interactionDOIdepth of interaction(con) Dual LayerA Point Spread Function (PSF) describes the response of an imaging system to a point source or point object. A system that knows the response of a point source from everywhere in its field of view can use this information to recover

23、 the original shape and form of imaged objects. PSFs are used in precision imaging instruments, such as microscopy, ophthalmology, and astronomy (e.g. the Hubble telescope) to make geometric corrections to the final image.Point Spread Function (PSF) Motion correctionlCardiac motion and respirationMo

24、tion correction(con)lGated frameslList modelRespiratory motion is distributed throughout the whole bodylImpact is rarely on detection, but often affects quantitationStatic wholebodySingle respiratory phase(1 of 7, so noisier) 1 cc lesion on CTWhole-body respiratory gated PET/CT: PatientsPartial volu

25、me effectlCharacterslObject or structure being imaged only partially occupies the sensitive volume of scannerlSignal amplitude becomes diluted with signals from surrounding structureslThe degree of underestimation of radioactivity concentration will depend not only on its size but also on the relati

26、ve concentration in surrounding structureslCorrection methodslResolution recoverylUse of anatomical imaging dataA Point Spread Function (PSF) describes the response of an imaging system to a point source or point object. A system that knows the response of a point source from everywhere in its field

27、 of view can use this information to recover the original shape and form of imaged objects. PSFs are used in precision imaging instruments, such as microscopy, ophthalmology, and astronomy (e.g. the Hubble telescope) to make geometric corrections to the final image.Point Spread Function (PSF) Partia

28、l volume effectMAPassumptions:camera moves along circular orbitorbit is reproducible calibration method finds system geometryproblem 1: tilting detectorassumption: camera moves along circular orbitAORAxial of rotationlOffset of AORlRotation of AORlNutation of AORCamera head tiltlHeads need to be exa

29、ctly parallel to axis of rotationCorrect alignmentHead tiltpinhole calibrationDirk Bequ, Kathleen Vunckxcircular orbitcircular orbit + new modelextension 2: circular orbit + arbitrary small deviationsmeasurementmodelMichel Defrise, Chris Vanhoveextension 2: circular orbit + arbitrary small deviation

30、soldnewtranslationsrotations1mm-3mm1.5mm-1.5mm1.5mm-1mm1o-2o1.5o-1.5o3.5o-2.5o1mm1.21.41.61.82mmOutline lData organizationlCorrection methodslRebinning lImage reconstructionlImage registration and fusionlDICOM and PACSRebinninglConvert 3D data to 2DSSRB and MSRBlSSRB- Single-slice rebinninglDetectio

31、n: center slice lSimple lFast lResolution losslMSRB- Multi-slice rebinninglDistribute along all intermediate sliceslDe-blurring along z-axisFourier rebinningOutline lData organizationlCorrection methodslRebinning lImage reconstructionlImage registration and fusionlDICOM and PACSImage reconstructionl

32、AnalyticallFBPlBPFlFDKl3D RPllIterativelARTlMLEMlOSEMlOSLSlMAPlAnalytical algorithmslFor example, FBP (Filtered Back-projection)lTreat the unknown image as continuouslPoint-by-point reconstructionlRegular grid points are commonly chosenlTreat projection process as line integral theoretically解析重建解析重建

33、-FBPFBPback projection (BP) = summation of projectionsfiltered back projection (FBP)FDKlFeldkamp、Davis、KressFDKstzODstOSP(t,s,z)rQQQDFocus losusxy) (ttstzddOO DD)(11SS)(22SS2022222)(),()(21),(dpdpDDpphpRsDDzstfcossin)sincos(yxDyxDsDDtpcossinyxDDzsDDz3D RPRe-projectionSteps of 3D RPlExtract 2D sinogr

34、amslReconstruct each with 2D FBP and stack to form 3D imagelForward project to calculate missing LORslExtract 2D projection data of all oblique sliceslTake 2D Fourier transformlBack project data through 3D image matrixlRepeat for all angles and oblique slicesWhat is iterative reconstructionlDiscrete

35、 measurements, discrete imagelOptimizationAttractions of iterative methodslEither consistent or inconsistent is OKlComplex geometrylPhysical effects and detection processes can be modeledlNon-negativity lGreat reducing streaking artifactslBetter contrast recoverylClassification of iteration reconstr

36、uction methodslART (algebraic reconstruction techniques)lMART (multiplicative ART)lAART (additive ART)lSIRT (simultaneous iterative reconstruction)lSMART (simultaneously MART)lBI-ART (block iterative ART)lBI-SMART (block iterative SMART)lRBI-SMART (rescaled BI-SMART)Statistical algorithmslMAP: lMaxi

37、mize the conditional probability P(image|data)lMLEM:lMaximize the probability P(data|image)Statistical algorithmsGaussian assumptionP is projection column matrix, A is system matrix, F image column matrix, C is the covariance matrix of the dataAssumed all standard deviations are identical and equal

38、to 1, idealized parallel projection, perfect resolution and no attenuation or other degrading affectsStatistical algorithmsPoisson assumptionjikjkkifjipjdjipjipifjif)1( )1()() () , ()(),(),()(),(jjsjiksjkkifjipjdjipjipifjif)1( )1()() () , ()(),(),()(),(实测数据迭代重建迭代重建-MLEM&OSEM正投影比较更新重建MLEM, OSEM, .lik

39、elihooditerationSinogramr1 3 2 4Subset order012341040ordered subsets1 iteration of 40 subsets(2 proj per subset)System matrixlScan geometrylCollimator/detector responselAttenuationlScatter (object, collimator, scintillator)lDuty cycle (dwell time at each angle)lDetector efficiencylDead-time losseslP

40、ositron rangelNon-colinearitylCrystal penetrationConsiderations of system matrixlQuantitative accuracylSpatial accuracylComputation time lStorage spacelModel uncertaintieslArtifacts due to over simpleificationslSystem matrix trickslFactorizelSymmetrylSparsenesslApproximationlPartial Monte CarlolSyst

41、em matrix modelReconstruction image of uniform sourceFBP VS. OSEMlFBPanalyticallPros:lSingle pass lLinearlFastlCons:lStreak artifactlPoor resolutionlCorrection not built-inlOSEMiterationlPros:lBetter resolutionlBetter contrastlLower noiselCons:lExtensive time consuminglMemory consuminglRequired user

42、 trainingFBP VS. OSEMlPhantom test (left)lClinical results (right)Outline lData organizationlCorrection methodslRebinning lImage reconstructionlImage registration and fusionlDICOM and PACSImage RegistrationPETCTPET/CTVoxel based image registrationImage RegistrationImage Registrationl算法流程图相似性测量一般用到的函

43、数有相似性测量一般用到的函数有:相同模态图像:残差(sum of square difference)不同模态图像:互信息(mutual information)一般用来做配准的优化算法有:一般用来做配准的优化算法有:六参数或十二参数的优化一般使用 Powell 优化算法多参数优化一般使用LBFGS( limited-memory BroydenFletcherGoldfarbShanno )优化算法(由牛顿算法演变而来)Image FusionlAlpha Blending basedlAdaptive alpha blending Alpha blendingAdaptive Alpha

44、blending( , )( , )*( , )( , )*(1-( , )Ri jRi jalpha i jRi jalpha i jFAB( , )( , )*( , )( , )*(1-( , )Gi jGi jalpha i jGi jalpha i jFAB( , )( , )*( , )( , )*(1-( , )Bi jBi jalpha i jBi jalpha i jFABOutline lData organizationlCorrection methodslRebinning lImage reconstructionlImage registration and fu

45、sionlDICOM and PACSDICOM and PACSlDICOMlDigital image and Communication in MedicinelCreated by ACR (American College of Radiology) and NEMA (National Electrical Manufacturers Association) in 1985lTwo components:lCommunication protocols and image format standardsDICOM image VS. General imagelStructur

46、e:lDICOM contains header and image data sections;lOther image file such as BMP, JPG, TIFF, which contain also two sections;lSize:lThe header size of DICOM is variable;lThe header size of many general image is constantlContents:lDICOM contains additional patients data such as basic information, study

47、 information and so on;lGeneral image header describes basic image parameters, such as image size, compression typeDICOM logical layerslPatient information:lPatients name, patients ID, patients birth date, hospital information systemlStudy information:lStudy information such as dose, injection time

48、and additional examination information such as study name study date;lSeries information:lSeries ID, manufacturer and institution namelImage information:lThe size of pixel, image size, pixel value and how it is encodedPACSlPACSlThe Picture Archival and Communication SystemlA system for storage of im

49、ages and transferring images between computers in different facilities through networkslPACS is helpful to provide comparative studies among different image modalities PACS (con)Thanks Our Group is Our Group is growing up growing up TOF-PETTOF信息信息PET原始数据偶然符合校正发射图像衰变校正死时间校正弓形几何校正衰减校正散射校正归一化校正图像重建数据重组数据校正

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|