ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:406.39KB ,
文档编号:3154084      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3154084.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(副主任)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高考数学复习专题5《圆锥曲线中的定点问题》学生版.docx)为本站会员(副主任)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高考数学复习专题5《圆锥曲线中的定点问题》学生版.docx

1、专题05 圆锥曲线中的定点问题一、多选题 1设A,B是抛物线上的两点,是坐标原点,下列结论成立的是( )A若,则B若,直线AB过定点C若,到直线AB的距离不大于1D若直线AB过抛物线的焦点F,且,则2设是抛物线上两点,是坐标原点,若,下列结论正确的为( )A为定值B直线过抛物线的焦点C最小值为16D到直线的距离最大值为4二、单选题3已知直线与椭圆总有公共点,则的取值范围是( )ABCD且三、解答题4已知抛物线C:x22py(p0)的焦点为F,点M(2,m)(m0)在抛物线上,且|MF|2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,证明:过点F作切

2、线l0的垂线,垂足必在x轴上.5已知抛物线E:x22py(p0)的焦点为F,A(2,y0)是E上一点,且|AF|2.(1)求E的方程;(2)设点B是E上异于点A的一点,直线AB与直线yx3交于点P,过点P作x轴的垂线交E于点M,证明:直线BM过定点.6已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图:(1)若POM的面积为 ,求向量与的夹角;(2)证明:直线PQ恒过一个定点.7设为坐标原点,椭圆的焦距为,离心率为,直线与交于两点.(1)求椭圆的方程;(2)设点,求证:直线过定点,并求出定点的坐标.8已知抛物线经过

3、点(1)求抛物线的方程及其相应准线方程;(2)过点作斜率为的两条直线分别交抛物线于和四点,其中.设线段和的中点分别为过点作垂足为证明:存在定点使得线段长度为定值.9设、分别是椭圆C:的左、右焦点,直线过且垂直于x轴,交椭圆C于A、B两点,连接A、B、,所组成的三角形为等边三角形.(1)求椭圆C的方程;(2)过右焦点的直线m与椭圆C相交于M、N两点,试问:椭圆C上是否存在点P,使成立?若存在,求出点P的坐标;若不存在,说明理由.10设椭圆的左、右焦点分别为,离心率为,短轴长为.(1)求椭圆的标准方程;(2)设左、右顶点分别为、,点在椭圆上(异于点、),求的值;(3)过点作一条直线与椭圆交于两点,

4、过作直线的垂线,垂足为.试问:直线与是否交于定点?若是,求出该定点的坐标,否则说明理由.11在平面直角坐标系中,动点到点的距离和它到直线的距离的比是常数(1)求动点的轨迹方程;(2)若过点作与坐标轴不垂直的直线交动点的轨迹于两点,设点关于轴的对称点为,当直线绕着点转动时,试探究:是否存在定点,使得三点共线?若存在,求出点的坐标;若不存在,请说明理由12在平面直角坐标系xOy中,有三条曲线:;.请从中选择合适的一条作为曲线C,使得曲线C满足:点F(1,0)为曲线C的焦点,直线y=x-1被曲线C截得的弦长为8.(1)请求出曲线C的方程;(2)设A,B为曲线C上两个异于原点的不同动点,且OA与OB的

5、斜率之和为1,过点F作直线AB的垂线,垂足为H,问是否存在定点M,使得线段MH的长度为定值?若存在,请求出点M的坐标和线段MH的长度;若不存在,请说明理由.13.已知圆,点P是直线上的一动点,过点P作圆M的切线PA,PB,切点为A,B(1)当切线PA的长度为时,求点P的坐标;(2)若的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由;14已知椭圆的一个焦点与抛物线的焦点重合,且椭圆的离心率为.(1)求椭圆的标准方程;(2)直线交椭圆于两点,线段的中点为,直线是线段的垂直平分线,求证:直线过定点,并求出该定点的坐标.15已知椭圆:的离心率为,且经

6、过点,(1)求椭圆的标准方程;(2)过点作直线与椭圆相较于,两点,试问在轴上是否存在定点,使得两条不同直线,恰好关于轴对称,若存在,求出点的坐标,若不存在,请说明理由16已知椭圆的左、右焦点分别为、,点P在直线上且不在x轴上,直线与椭圆E的交点分别为A、B,直线与椭圆E的交点分别为C、D(1)设直线、的斜率分别为、,求的值(2)问直线m上是否点P,使得直线OA,OB,OC,OD的斜率,满足若存在,求出所有满足条件的点P的坐标若不存在,请说明理由.17已知直线l:x=my+1过椭圆C:b2x2+a2y2=a2b2(ab0)的右焦点F,且交椭圆C于AB两点,点AB在直线G:x=a2上的射影依次为点

7、DE.(1)若,其中O为原点,A2为右顶点,e为离心率,求椭圆C的方程;(2)连接AF,BD,试探索当m变化时,直线AE,BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.18已知抛物线的焦点为,过点的直线与抛物线在第一象限相切于点,点到坐标原点的距离为.(1)求抛物线的标准方程;(2)过点任作直线与抛物线相交于,两点,请判断轴上是否存点,使得点到直线,的距离都相等.若存在,请求出点的坐标;若不存在,请说明理由.19已知椭圆E:的离心率为,椭圆上任一点到两个焦点的距离之和为4(1)求椭圆E的标准方程;(2)已知Q(4,0),斜率为的直线(不过点Q)与椭圆E交于A

8、,B两点,O为坐标原点,若,则直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由20设两点的坐标分别为直线相交于点,且它们的斜率之积为,直线方程:,直线与直线分别相交于两点,交轨迹与点(1)求点的轨迹方程.(2)求证:三点共线(3)求证:以为直径的圆过定点.21已知椭圆,以抛物线的焦点为椭圆E的一个顶点,且离心率为.(1)求椭圆E的方程;(2)若直线与椭圆E相交于A、B两点,与直线相交于Q点,P是椭圆E上一点,且满足(其中O为坐标原点),试问在x轴上是否存在一点T,使得为定值?若存在,求出点T的坐标及的值;若不存在,请说明理由.22已知点是抛物线的准线上任意一点,过点作抛物线的两条

9、切线、,其中、为切点.(1)证明:直线过定点,并求出定点的坐标;(2)若直线交椭圆于、两点,、分别是、的面积,求的最小值.23已知椭圆的离心率为,其短轴长为(1)求椭圆的标准方程;(2)已知直线,过椭圆右焦点的直线(不与轴重合)与椭圆相交于,两点,过点作,垂足为求证:直线过定点,并求出定点的坐标;点为坐标原点,求面积的最大值24已知椭圆的左、右焦点分别为,为椭圆上一点,且(1)求椭圆的方程(2)过点作互相垂直的两条直线分别交椭圆于另一点A,B,求证:直线AB过定点,并求出定点的坐标25已知椭圆:()的左焦点,椭圆的两顶点分别为,M为椭圆上除A,B之外的任意一点,直线MA,BM的斜率之积为.(1)求椭圆的标准方程;(2)若P为椭圆短轴的上顶点,斜率为的直线不经过P点且与椭圆交于E,F两点,设直线PE,PF的斜率分别为,且,试问直线是否过定点,若是,求出这定点;若不存在,请说明理由.四、填空题26设抛物线上两点A,B位于x轴的同侧,且A,B两点的横坐标之积为4,则直线经过的定点坐标是_.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|