ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:441.50KB ,
文档编号:3178771      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3178771.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第2讲Maxwell方程Yee算法课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第2讲Maxwell方程Yee算法课件.ppt

1、第第 2 2 讲讲 MaxwellMaxwell方程方程YeeYee算法算法 本讲介绍K.S.Yee提出的FDTD算法,它是电磁场FDTD分析的基础。Yee的独特之处是在空间为每一个电场和磁场分量的空间取样选择一种特殊的网格称之为Yee网格,在时间上,采用了蛙跳算法,使得利用一阶导数的二阶中心差分近似从Maxwell方程获得的FDTD公式,既满足Maxwell方程的微分形式又满足其积分形式。因此,Yee的FDTD算法非常稳固,具有很广的应用领域。2.1 2.1 一维一维MaxwellMaxwell方程的方程的YeeYee算法(算法(1 1)一维Maxwell方程利用一阶导数的二阶中心差分近似,

2、上面的方程变为zHtEyrx01zEtHxry01zkHkHktkEkEnynyrnxnx)()()(1)()(212/1212/101zkEkEktkHkHnxnxrnyny)()1()(1)()(210212/1212/12.1 2.1 一维一维MaxwellMaxwell方程的方程的YeeYee算法(算法(2 2)采用归一化磁场 使得电场与归一化磁场有相同的数量级,于是可以得到FDTD迭代公式为式中,为自由空间中的光速。)21()21()()()(2/12/11kHkHkztckEkEnynyrnxnx)()1()()21()21(212/12/1kEkEkztckHkHnxnxrnyn

3、yHH00001c2.1 2.1 一维一维MaxwellMaxwell方程的方程的YeeYee算法(算法(3 3)用计算机语言表示的FDTD公式式中,时间变量已隐含在迭代公式中,以及 只要给定了所有空间点上电/磁场的初值,就可以一步一步地求出任意时刻所有空间点上的电/磁场值。1*kExkExkcakHykHy 1*kHykHykcbkExkEx)(;)(;);21(21kztckcbkztckcakEkExkHkHyrrxy2.1 2.1 一维一维MaxwellMaxwell方程的方程的YeeYee算法(算法(3 3)电场与磁场分量的空间-时间分布图xExExEyHyH0123k0n2n2/3

4、n1n2/1n2.1 2.1 一维一维MaxwellMaxwell方程的方程的YeeYee算法(算法(4 4)Main loop in 1D FDTD C-program:for(k=0;k=kmax;k+)Hyk=0;Exk=0;for(n=1;n=nmax;n+)Ex(0)=Source(n);for(k=0;kkmax;k+)Hyk=Hyk-cak*(Exk+1-Exk);for(k=1;knmax结 束NoYes2.3 2.3 以积分形式的以积分形式的FaradayFaraday和和 Ampere Ampere 定理定理解释解释YeeYee算法算法(1 1)上面介绍的FDTD算法是从点

5、的观点对Maxwell方程微分形式中的两个旋度方程直接进行导数二阶中心差分近似得到的。这种观点对理解FDTD如何模拟波在媒质中的传播是有用的。但是,当模拟细几何结构如导线、槽和曲面时,点的观点对于指导为了获得适当解需要作怎样的算法修正却帮助甚少。为了解决这一问题,我们从积分形式的Ampere和Faraday定理出发来解释Yee算法。2.3 2.3 以积分形式的以积分形式的FaradayFaraday和和 Ampere Ampere 定理定理解释解释YeeYee算法(算法(2 2)仅讨论自由空间的情况。考虑右图中实线网格的y-z平面上包围面积S1的矩形围线C1。沿C1应用Faraday定理:(i

6、+1/2,j+1/2,k-1/2)C2S2Ey(i,j,k)C1S1EzEyEzHxHxHxHzHz110csl dEsdHt2.3 2.3 以积分形式的以积分形式的FaradayFaraday和和 Ampere Ampere 定理定理解释解释YeeYee算法(算法(3 3)假设在围线任一边上和围线所围的面积上相应的场值不变,时间导数采用中心差分近似,则Faraday定理近似为 整理后便可得到自由空间中FDTD公式。zEEyEEtHHzynkjiznkjiznkjiynkjiynkjixnkjix21,21,1,21,1,21,21,21,21,21,021212.3 2.3 以积分形式的以积

7、分形式的FaradayFaraday和和 Ampere Ampere 定理定理解释解释YeeYee算法(算法(4 4)以相同的方式,把Ampere 定理应用于图中虚线网格的x-z平面上包围面积S2的矩形围线C2,并作类似的假设,也可以得到相应的FDTD公式。所以,FDTD公式既是微分形式的Maxwell旋度方程的中心差分近似,也自然满足积分形式的Ampere和Faraday定律。220csl dHsdEt 2.4 2.4 YeeYee算法的无散性算法的无散性(1 1)对于无源区域,满足Maxwell两个旋度方程的场也一定满足Maxwell的两个散度方程或它们的积分形式 下面证明对于从旋度方程近

8、似而来的FDTD 公式也满足两个散度方程。0 ,0BD0 ,0sssdBsdD 2.4 2.4 YeeYee算法的无散性(算法的无散性(2 2)在自由空间的一个Yee网格上考虑 ,有利用磁场分量的FDTD公式,把与磁场分量时间导数相关的电场空间有限差分代入上式中各项,可得zxHHtzxHHtzyHHtsdBtkjizkjizkjiykjiykjixkjixcellYee,21,211,21,21021,2121,1,21021,21,121,21,0ssdB0)3()2()1(yxTermzxTermzyTermsdBtcellYee 2.42.4 Yee Yee算法的无散性(算法的无散性(3

9、 3)于是设初始时磁场为零,则 所以,对于无源区域,FDTD公式满足磁场Gauss定理,即对于磁场是无散的。同理可以证明,对于电场,FDTD公式也满足Gauss定理,即电场也是无散的。constsdBcellYee 0 constsdBcellYee结结 论论 2 2(1 1)本讲介绍了求解矢量Maxwell方程的FDTD Yee算法,归纳起来,Yee算法的主要特点有:Yee算法采用耦合的Maxwell旋度方程,同时在时间和空间求解电场和磁场,而不是采用波动方程只求解电场或磁场。同时使用E和H信息比只使用其中一个的优点是获得的解更稳固(robust),即算法可以适用非常广泛的电磁波物理结构,并

10、且电场和磁场的特性可以用更直接的方式模拟。如果同时使用电场和磁场,每一种场的独立特性,如边沿和角处切向磁场的奇异性、细线附近磁场的奇异性以及靠近点、边沿和细导线处径向电场的奇异性就能够独立地模拟。结结 论论 2 2(2 2)Yee网格在三维空间这样安排E和H分量,使得每一个E或H分量由四个H或E循环的分量所环绕。这提供了一幅三维空间中由相互交链的Faraday定理和Ampere定理围线阵列构成的优美而简单的图画。保证了Yee算法同时模拟了Maxwell方程点意义上的微分形式和宏观的积分形式。后者对于处理边界条件和奇异性是极其有用的。旋度算子中空间导数的差分公式是二阶精度的中心差分。如果不同材料

11、的交界面平行于Yee网格的一个坐标轴,在交界面上切向E和H的连续性自然保持。在Yee算法隐含地执行了两个高斯定律。所以,同时保证了无源区域中电磁场的无散性。结结 论论 2 2(3 3)Yee算法以蛙跳算法在时间上安排E和H分量。在某一时刻,使用前一时刻的E数据计算所有H分量。然后,再使用刚计算的H数据计算所有的E分量。如此循环,直至完成时间步进过程。蛙跳时间步进过程是全显式的,所以完全避免了因求解联立方程和矩阵求逆所带来的问题。旋度方程中时间导数的差分公式是二阶精度的中心差分。时间步进算法是无数值损耗的,即在网格中传播的数值波并不产生寄生衰减。习习 题题 2 22.1证明对于电场,Yee算法也满足Gauss定理,即对于电场Yee算法也是无散的。2.2 试推导二维TE模(Ez=0)和TM模(Hz=0)的FDTD Yee 算法。2.3 编制二维TM模Yee 算法的程序。假设模拟区域为自由空间单位正方形,时间步为 ,x方向与y方向步长相等。模拟区域的边界为理想电导体。设在区域的中心电场分量Ez随时间按高斯或正弦变化。在外向波到达区域边界之前和之后的一些时刻求区域内的电场和磁场分布。对于正弦激励的情况,确定外向波振幅离开源点随径向距离的衰减特性,并与二维解析Green函数相比较。)2/(cxt

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|