1、课时过关检测(十六) 导数与不等式的证明1已知函数f(x)x2ln x(1)求f(x)的单调区间;(2)证明:x2x解:(1)f(x)x2ln x的定义域是(0,),f(x)2x,当x时,f(x)0,函数f(x)在上单调递增;当0x时,f(x)0,函数f(x)在上单调递减,综上,函数f(x)的单调增区间为,单调减区间为(2)证明:由x0,要证x2x,即证f(x)x3x2xx3xln x0,令g(x)x3xln x(x0),则g(x)x2,令t(x)3x3x4(x0),t(x)9x210恒成立,t(x)在(0,)上单调递增,又t(1)0,即g(1)0,当x(0,1)时,t(x)0,即g(x)0,
2、即g(x)0,g(x)在(1,)上单调递增,g(x)最小值g(x)极小值g(1)0成立,所以原不等式成立2(2022许昌二模)已知函数f(x)x2ax3,g(x)xln x,aR(1)当x0时,2g(x)f(x),求a的取值范围;(2)证明:当x0时,g(x)解:(1)当x0时,2g(x)f(x),即2xln xx2ax3,即a2ln xx,设h(x)2ln xx(x0),则h(x)1,当x(0,1)时,h(x)0,h(x)在(1,)上单调递增,h(x)minh(1)4,则a4实数a的取值范围为(,4(2)证明:g(x)xln x,g(x)1ln x,令g(x)0,x,当x时g(x)0,函数g
3、(x)在上单调递减,在上单调递增,当x0时,g(x)ming,令(x),则(x),易知(x)在(0,1)上单调递增,在(1,)上单调递减,(x)max(1),又两个等号不同时成立,故当x0时,g(x)3已知函数f(x)eln xax(aR)(1)讨论f(x)的单调性;(2)当ae时,证明:xf(x)ex2ex0解:(1)f(x)a(x0)若a0,则f(x)0,f(x)在(0,)上单调递增;若a0,则当0x0;当x时,f(x)0,所以只需证f(x)2e,当ae时,由(1)知,f(x)在(0,1)上单调递增,在(1,)上单调递减所以f(x)maxf(1)e,记g(x)2e(x0),则g(x),所以
4、当0x1时,g(x)1时,g(x)0,g(x)单调递增,所以g(x)ming(1)e,综上,当x0时,f(x)g(x),即f(x)2e,即xf(x)ex2ex04(2022衡水模拟)已知函数f(x)(x1)(x22)ex2x(1)求曲线yf(x)在点(0,f(0)处的切线方程;(2)证明:f(x)x24解:(1)因为f(x)2x(x1)exx(x22)ex2x2(x2)ex2,所以f(0)2因为f(0)2,所以曲线yf(x)在点(0,f(0)处的切线方程为2xy20(2)证明:要证f(x)x24,只需证(x1)(x22)exx22x4,设g(x)x22x4(x1)23,h(x)(x1)(x22
5、)ex,则h(x)x2(x2)ex由h(x)0,得x2,故h(x)在2,)上单调递增;由h(x)0,得x3又g(x)max3,所以g(x)maxx22x4,即f(x)x245已知函数f(x),曲线yf(x)在点(1,f(1)处的切线方程为x2y30(1)求a,b的值;(2)证明:当x0,且x1时,f(x)解:(1)f(x)(x0)由于直线x2y30的斜率为,且过点(1,1),故即解得a1,b1(2)证明:由(1)知f(x)(x0),所以f(x)考虑函数h(x)2ln x(x0),则h(x)所以当x1时,h(x)0而h(1)0,故当x(0,1)时,h(x)0,可得h(x)0;当x(1,)时,h(
6、x)0,可得h(x)0从而当x0,且x1时,f(x)0,即f(x)6(2022莆田模拟)已知函数f(x)ln xax,aR(1)讨论函数f(x)的单调区间;(2)当a时,证明:x3f(x)解:(1)f(x)的定义域为(0,)由已知得f(x)a(x0),则:当a0时,f(x)0恒成立,此时f(x)在(0,)上单调递增当a0,得x,则f(x)在上单调递增,在上单调递减综上所述,当a0时,f(x)的单调递增区间为(0,);当af(x)即x3ln xx考虑到x0时,x1ln x,欲证x3ln xx,只需证x3x1x设g(x)x3x1(x0),则g(x)3x2(x0),令g(x)0,解得x,令x0,则当
7、x(0,x0)时,g(x)0,所以g(x)在(0,x0)上单调递减,在(x0,)上单调递增所以g(x)g(x0)11,易知0,所以x3x1x(x0)恒成立,所以x3ln xx恒成立,即x3f(x)法二:当a时,x3f(x)可化为x2令m(x)x1,x0,则m(x)(x0),令h(x)x2ln x1,x0,则h(x)2x0,所以h(x)在(0,)上单调递增,又h(1)0,所以当x(0,1)时,h(x)0,则m(x)0,则m(x)0,所以m(x)在(0,1)上单调递减,在(1,)上单调递增,所以m(x)m(1)0,即x1,当且仅当x1时,等号成立又x2(x1)x2x20,所以x2x1,当且仅当x时,等号成立因为两个等号不同时成立,故x2,即x2,即x3ln xx,即x3f(x)